Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 387(5): 408-420, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921450

RESUMEN

BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antiparkinsonianos , Enfermedad de Parkinson , alfa-Sinucleína , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antiparkinsonianos/efectos adversos , Método Doble Ciego , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Resultado del Tratamiento , alfa-Sinucleína/inmunología
2.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936981

RESUMEN

Through its pathological and genetic association to Parkinson's Disease (PD), α-synuclein (α-syn) remains a favorable therapeutic target that is being investigated using various modalities, including many passive immunotherapy approaches clinically targeting different forms of α-syn and epitopes. Whereas published studies from some immunotherapy trials have demonstrated engagement in plasma, none have shown direct drug-antigen interactions in the disease-relevant compartment, the central nervous system (CNS). Cinpanemab (BIIB054) selectively targets pathological aggregated α-syn with low affinity binding to monomeric forms. The avidity-driven binding, low drug concentration, and the very low α-syn levels plus its heterogeneous nature in cerebrospinal fluid (CSF) made it not possible to measure drug-target interactions by conventional assays. Here we overcame these challenges by using zero-length crosslinking to stabilize the BIIB054-α-syn complexes and then quantified the crosslinked complexes using a Meso Scale Discovery (MSD) electrochemiluminescence assay. CSF samples from healthy volunteers (HV, n=46) and individuals with PD (PD, n=18) from study 228HV101 (Phase I clinical trial of BIIB054), demonstrated dose- and time- dependent binding of cinpanemab to α-syn with measurable complexes detected at doses {greater than or equal to}15 mg/kg. Complex formation displayed a direct positive correlation to drug concentration (Spearman rank correlation = 0.8295 (HV), 0.8032 (PD) p < 0.0001 (HV, PD)). The observed binding of cinpanemab to α-syn in CSF is consistent with its low intrinsic affinity for α-syn monomer and provides evidence that the drug is behaving with expected binding dynamics in the central nervous system compartment. Significance Statement A zero-length cross-linking method with MSD detection was developed to enable quantification of cinpanemab-α-syn complexes in Phase 1 clinical CSF samples by preventing signal loss caused by their rapid dissociation. Observed dose- and time-dependent binding were consistent with cinpanemab's affinity for α-syn and provided confidence that the drug had engaged its target at the desired site of action. This is the first demonstration of α-syn binding by an antibody in clinical samples from the CNS.

3.
Mov Disord ; 38(3): 386-398, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807624

RESUMEN

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD). OBJECTIVE: The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD. METHODS: Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers. RESULTS: A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was ~1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (≤98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (≤93%), cerebrospinal fluid total LRRK2 (≤50%), and urine bis (monoacylglycerol) phosphate (≤74%). CONCLUSIONS: At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. © 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Leucocitos Mononucleares/metabolismo , Voluntarios Sanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Biomarcadores/metabolismo , Mutación
4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982955

RESUMEN

In this study, α-ω-disubstituted polyamines exhibit a range of potentially useful biological activities, including antimicrobial and antibiotic potentiation properties. We have prepared an expanded set of diarylbis(thioureido)polyamines that vary in central polyamine core length, identifying analogues with potent methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Acinetobacter baumannii and Candida albicans growth inhibition properties, in addition to the ability to enhance action of doxycycline towards Gram-negative bacterium Pseudomonas aeruginosa. The observation of associated cytotoxicity/hemolytic properties prompted synthesis of an alternative series of diacylpolyamines that explored aromatic head groups of varying lipophilicity. Examples bearing terminal groups each containing two phenyl rings (15a-f, 16a-f) were found to have optimal intrinsic antimicrobial properties, with MRSA being the most susceptible organism. A lack of observed cytotoxicity or hemolytic properties for all but the longest polyamine chain variants identified these as non-toxic Gram-positive antimicrobials worthy of further study. Analogues bearing either one or three aromatic-ring-containing head groups were either generally devoid of antimicrobial properties (one ring) or cytotoxic/hemolytic (three rings), defining a rather narrow range of head group lipophilicity that affords selectivity for Gram-positive bacterial membranes versus mammalian. Analogue 15d is bactericidal and targets the Gram-positive bacterial membrane.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Animales , Poliaminas/farmacología , Antibacterianos/farmacología , Bacterias , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Mamíferos
5.
Mov Disord ; 37(1): 190-195, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34550621

RESUMEN

BACKGROUND: Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are risk factors for Parkinson's disease (PD). OBJECTIVE: To explore the association between GCase activity, PD phenotype, and probability for prodromal PD among carriers of mutations in the GBA and LRRK2 genes. METHODS: Participants were genotyped for the G2019S-LRRK2 and nine GBA mutations common in Ashkenazi Jews. Performance-based measures enabling the calculation of the Movement Disorder Society (MDS) prodromal probability score were collected. RESULTS: One hundred and seventy PD patients (102 GBA-PD, 38 LRRK2-PD, and 30 idiopathic PD) and 221 non-manifesting carriers (NMC) (129 GBA-NMC, 45 LRRK2-NMC, 15 GBA-LRRK2-NMC, and 32 healthy controls) participated in this study. GCase activity was lower among GBA-PD (3.15 ± 0.85 µmol/L/h), GBA-NMC (3.23 ± 0.91 µmol/L/h), and GBA-LRRK2-NMC (3.20 ± 0.93 µmol/L/h) compared to the other groups of participants, with no correlation to clinical phenotype. CONCLUSIONS: Low GCase activity does not explain the clinical phenotype or risk for prodromal PD in this cohort. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Glucosilceramidasa/genética , Heterocigoto , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Enfermedad de Parkinson/complicaciones
6.
J Neurosci ; 36(28): 7415-27, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413152

RESUMEN

UNLABELLED: Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT: α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.


Asunto(s)
Cuerpos de Inclusión/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neuronas/metabolismo , Transcitosis/fisiología , alfa-Sinucleína/metabolismo , Animales , Regulación de la Expresión Génica/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligorribonucleótidos Antisentido/farmacología , Fotoblanqueo , Ratas , Sinucleínas/metabolismo , Transcitosis/genética , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
7.
Neurobiol Dis ; 105: 84-98, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28576704

RESUMEN

Proteinaceous inclusions in neurons, composed primarily of α-synuclein, define the pathology in several neurodegenerative disorders. Neurons can internalize α-synuclein fibrils that can seed new inclusions from endogenously expressed α-synuclein. The factors contributing to the spread of pathology and subsequent neurodegeneration are not fully understood, and different compositions and concentrations of fibrils have been used in different hosts. Here, we systematically vary the concentration and length of well-characterized α-synuclein fibrils and determine their relative ability to induce inclusions and neurodegeneration in different hosts (primary neurons, C57BL/6J and C3H/HeJ mice, and Sprague Dawley rats). Using dynamic-light scattering profiles and other measurements to determine fibril length and concentration, we find that femptomolar concentrations of fibrils are sufficient to induce robust inclusions in primary neurons. However, a narrow and non-linear dynamic range characterizes fibril-mediated inclusion induction in axons and the soma. In mice, the C3H/HeJ strain is more sensitive to fibril exposures than C57BL/6J counterparts, with more inclusions and dopaminergic neurodegeneration. In rats, injection of fibrils into the substantia nigra pars compacta (SNpc) results in similar inclusion spread and dopaminergic neurodegeneration as injection of the fibrils into the dorsal striatum, with prominent inclusion spread to the amygdala and several other brain areas. Inclusion spread, particularly from the SNpc to the striatum, positively correlates with dopaminergic neurodegeneration. These results define biophysical characteristics of α-synuclein fibrils that induce inclusions and neurodegeneration both in vitro and in vivo, and suggest that inclusion spread in the brain may be promoted by a loss of neurons.


Asunto(s)
Dopamina/metabolismo , Cuerpos de Inclusión/patología , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/ultraestructura , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/ultraestructura , Proteínas tau/metabolismo
9.
Am J Respir Cell Mol Biol ; 54(3): 359-69, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26222144

RESUMEN

Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.


Asunto(s)
Bronquios/enzimología , Fibrosis Quística/enzimología , Células Epiteliales/enzimología , Exosomas/enzimología , Proteínas Mitocondriales/metabolismo , Serina Endopeptidasas/metabolismo , Receptor Toll-Like 4/metabolismo , Adulto , Animales , Bronquios/efectos de los fármacos , Bronquios/microbiología , Estudios de Casos y Controles , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Exosomas/efectos de los fármacos , Exosomas/microbiología , Femenino , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C3H , Ratones Noqueados , Prolil Oligopeptidasas , Pseudomonas aeruginosa/aislamiento & purificación , Interferencia de ARN , Transducción de Señal , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética , Transfección , Adulto Joven
10.
J Biol Chem ; 290(32): 19433-44, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26078453

RESUMEN

Therapeutic approaches to slow or block the progression of Parkinson disease (PD) do not exist. Genetic and biochemical studies implicate α-synuclein and leucine-rich repeat kinase 2 (LRRK2) in late-onset PD. LRRK2 kinase activity has been linked to neurodegenerative pathways. However, the therapeutic potential of LRRK2 kinase inhibitors is not clear because significant toxicities have been associated with one class of LRRK2 kinase inhibitors. Furthermore, LRRK2 kinase inhibitors have not been tested previously for efficacy in models of α-synuclein-induced neurodegeneration. To better understand the therapeutic potential of LRRK2 kinase inhibition in PD, we evaluated the tolerability and efficacy of a LRRK2 kinase inhibitor, PF-06447475, in preventing α-synuclein-induced neurodegeneration in rats. Both wild-type rats as well as transgenic G2019S-LRRK2 rats were injected intracranially with adeno-associated viral vectors expressing human α-synuclein in the substantia nigra. Rats were treated with PF-06447475 or a control compound for 4 weeks post-viral transduction. We found that rats expressing G2019S-LRRK2 have exacerbated dopaminergic neurodegeneration and inflammation in response to the overexpression of α-synuclein. Both neurodegeneration and neuroinflammation associated with G2019S-LRRK2 expression were mitigated by LRRK2 kinase inhibition. Furthermore, PF-06447475 provided neuroprotection in wild-type rats. We could not detect adverse pathological indications in the lung, kidney, or liver of rats treated with PF-06447475. These results demonstrate that pharmacological inhibition of LRRK2 is well tolerated for a 4-week period of time in rats and can counteract dopaminergic neurodegeneration caused by acute α-synuclein overexpression.


Asunto(s)
Antiparkinsonianos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Pirroles/farmacología , alfa-Sinucleína/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos , Humanos , Inyecciones Intraventriculares , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/metabolismo
12.
Mov Disord ; 31(10): 1543-1550, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27297049

RESUMEN

BACKGROUND: Mutations in Leucine-rich repeat kinase 2 (LRRK2) enhance levels of the autophosphorylated LRRK2 protein and are the most common known cause of inherited Parkinson's disease (PD). LRRK2 has been further implicated in susceptibility to idiopathic PD in genetic association studies. OBJECTIVE: The objective of this study was to compare autophosphorylated Ser(P)-1292 LRRK2 levels from biobanked urine samples with clinical data in PD patients and controls. METHODS: Ser(P)-1292 LRRK2 levels were measured from urine exosome fractions from 79 PD patients and 79 neurologically healthy controls enrolled in the Parkinson Disease Biomarker Program at the University of Alabama at Birmingham. RESULTS: Ser(P)-1292 LRRK2 levels were higher in men than women (P < .0001) and elevated in PD patients when compared with controls (P = .0014). Ser(P)-1292 LRRK2 levels were higher in PD cases with worse cognition and correlated with poor performance in MoCA (r = -0.2679 [-0.4628 to -0.0482]), MDS-UPDRS subscales 1 and 2 (r = 0.2239 [0.0014-0.4252], 0.3404 [0.1276-0.5233], respectively), Epworth Sleepiness Scale (r = 0.3215 [0.1066-0.5077]), and Modified Schwab and England Activities of Daily Living Scales (r = -0.4455 [-0.6078 to -0.2475]). Ser(P)-1292 LRRK2 levels predicted those with worse cognitive impairment in PD patients with some success (c = 0.73). CONCLUSIONS: Urinary exosome Ser(P)-1292 LRRK2 levels are elevated in idiopathic PD and correlated with the severity of cognitive impairment and difficultly in accomplishing activities of daily living. These results implicate biochemical changes in LRRK2 in idiopathic PD. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Exosomas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/orina , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/orina , Índice de Severidad de la Enfermedad , Adulto , Anciano , Biomarcadores/orina , Disfunción Cognitiva/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Fosforilación
13.
J Neurosci ; 34(1): 10-21, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24381264

RESUMEN

Serine phosphorylation of AMPA receptor (AMPAR) subunits GluA1 and GluA2 modulates AMPAR trafficking during long-term changes in strength of hippocampal excitatory transmission required for normal learning and memory. The post-translational addition and removal of O-linked ß-N-acetylglucosamine (O-GlcNAc) also occurs on serine residues. This, together with the high expression of the enzymes O-GlcNAc transferase (OGT) and ß-N-acetylglucosamindase (O-GlcNAcase), suggests a potential role for O-GlcNAcylation in modifying synaptic efficacy and cognition. Furthermore, because key synaptic proteins are O-GlcNAcylated, this modification may be as important to brain function as phosphorylation, yet its physiological significance remains unknown. We report that acutely increasing O-GlcNAcylation in Sprague Dawley rat hippocampal slices induces an NMDA receptor and protein kinase C-independent long-term depression (LTD) at hippocampal CA3-CA1 synapses (O-GcNAc LTD). This LTD requires AMPAR GluA2 subunits, which we demonstrate are O-GlcNAcylated. Increasing O-GlcNAcylation interferes with long-term potentiation, and in hippocampal behavioral assays, it prevents novel object recognition and placement without affecting contextual fear conditioning. Our findings provide evidence that O-GlcNAcylation dynamically modulates hippocampal synaptic function and learning and memory, and suggest that altered O-GlcNAc levels could underlie cognitive dysfunction in neurological diseases.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Acilación/fisiología , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Mutantes , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
14.
J Biol Chem ; 289(47): 32937-51, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25228699

RESUMEN

Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Células Hep G2 , Humanos , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Piridazinas/química , Piridazinas/metabolismo , Piridazinas/farmacología , Homología de Secuencia de Aminoácido , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
15.
Hum Mol Genet ; 22(24): 4988-5000, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23886663

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trials.


Asunto(s)
Proteínas 14-3-3/metabolismo , Exosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Colectores/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Mutación , Neuronas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/líquido cefalorraquídeo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Ratas , Ratas Transgénicas
16.
Neurology ; 102(5): e209137, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38315945

RESUMEN

BACKGROUND AND OBJECTIVES: Sensitive, reliable, and scalable biomarkers are needed to accelerate the development of therapies for Parkinson disease (PD). In this study, we evaluate the biomarkers of early PD diagnosis, disease progression, and treatment effect collected in the SPARK. METHODS: Cinpanemab is a human-derived monoclonal antibody binding preferentially to aggregated forms of extracellular α-synuclein. SPARK was a randomized, double-blind, placebo-controlled, phase 2 multicenter trial evaluating 3 cinpanemab doses administered intravenously every 4 weeks for 52 weeks with an active treatment dose-blind extension period for up to 112 weeks. SPARK enrolled 357 participants diagnosed with PD within 3 years, aged 40-80 years, ≤2.5 on the modified Hoehn and Yahr scale, and with evidence of striatal dopaminergic deficit. The primary outcome was change from baseline in the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale total score. Secondary and exploratory biomarker outcomes evaluated change from baseline at week 52 relative to placebo. Dopamine transporter SPECT and MRI were used to quantify changes in the nigrostriatal dopamine pathway and regional atrophy. CSF and plasma samples were used to assess change in total α-synuclein levels, α-synuclein seeding, and neurofilament light chain levels. SPARK was conducted from January 2018 to April 2021 and terminated due to lack of efficacy. RESULTS: Approximately 3.8% (15/398) of SPECT-imaged participants did not have evidence of dopaminergic deficit and were screen-failed. Binary classification of α-synuclein seeding designated 93% (110/118) of the enrolled CSF subgroup as positive for α-synuclein seeds at baseline. Clinical disease progression was observed, with no statistically significant difference in cinpanemab groups compared with that in placebo. Ninety-nine percent of participants with positive α-synuclein seeding remained positive through week 52. No statistically significant changes from baseline were observed between treatment groups and placebo across biomarker measures. Broadly, there was minimal annual change with high interindividual variability across biomarkers-with striatal binding ratios of the ipsilateral putamen showing the greatest mean change/SD over time. DISCUSSION: Biomarker results indicated enrollment of the intended population with early PD, but there was no significant correlation with disease progression or clear evidence of a cinpanemab treatment effect on biomarker measures. Suitable biomarkers for evaluating disease severity and progression in early PD trials are still needed. TRIAL REGISTRATION INFORMATION: NCT03318523 (clinicaltrials.gov/ct2/show/NCT03318523); Submitted October 24, 2017; First patient enrolled January 2018.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína , Antiparkinsonianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Dopamina/metabolismo , Biomarcadores , Progresión de la Enfermedad , Método Doble Ciego
17.
Biomolecules ; 13(7)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37509123

RESUMEN

The marine natural product ianthelliformisamine C is a bis-cinnamido substituted spermine derivative that exhibits intrinsic antimicrobial properties and can enhance the action of doxycycline towards the Gram-negative bacterium Pseudomonas aeruginosa. As part of a study to explore the structure-activity requirements of these activities, we have synthesized a set of analogues that vary in the presence/absence of methoxyl group and bromine atoms and in the polyamine chain length. Intrinsic antimicrobial activity towards Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) and the fungus Cryptococcus neoformans was observed for only the longest polyamine chain examples of non-brominated analogues while all examples bearing either one or two bromine atoms were active. Weak to no activity was typically observed towards Gram-negative bacteria, with exceptions being the longest polyamine chain examples 13f, 14f and 16f against Escherichia coli (MIC 1.56, 7.2 and 5.3 µM, respectively). Many of these longer polyamine-chain analogues also exhibited cytotoxic and/or red blood cell hemolytic properties, diminishing their potential as antimicrobial lead compounds. Two of the non-toxic, non-halogenated analogues, 13b and 13d, exhibited a strong ability to enhance the action of doxycycline against P. aeruginosa, with >64-fold and >32-fold enhancement, respectively. These results suggest that any future efforts to optimize the antibiotic-enhancing properties of cinnamido-polyamines should explore a wider range of aromatic ring substituents that do not include bromine or methoxyl groups.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Poliaminas/farmacología , Doxiciclina , Bromo , Antiinfecciosos/farmacología , Escherichia coli , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
18.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37370335

RESUMEN

As part of our search for new antimicrobials and antibiotic enhancers, a series of naphthyl- and biphenyl-substituted polyamine conjugates have been synthesized. The structurally-diverse library of compounds incorporated variation in the capping end groups and in the length of the polyamine (PA) core. Longer chain (PA-3-12-3) variants containing both 1-naphthyl and 2-naphthyl capping groups exhibited more pronounced intrinsic antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) (MIC ≤ 0.29 µM) and the fungus Cryptococcus neoformans (MIC ≤ 0.29 µM). Closer mechanistic study of one of these analogues, 20f, identified it as a bactericide. In contrast to previously reported diarylacyl-substituted polyamines, several examples in the current set were able to enhance the antibiotic action of doxycycline and/or erythromycin towards the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. Two analogues (19a and 20c) were of note, exhibiting greater than 32-fold enhancement in activity. This latter result suggests that α,ω-disubstituted polyamines bearing 1-naphthyl- and 2-naphthyl-capping groups are worthy of further investigation and optimization as non-toxic antibiotic enhancers.

19.
Ocul Oncol Pathol ; 5(4): 267-272, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31367589

RESUMEN

G protein mutations are common in uveal melanomas, and the vast majority target amino acid residue Q209 in either GNAQ or GNA11. The GNAQ R183Q mutation is found in a small fraction of uveal melanomas. We report a patient with an unusual presentation of uveal melanoma arising at an early age in the setting of congenital skin and ocular surface melanosis. A 34-year-old Hispanic female with congenital bilateral nevus of Ota and ocular surface melanosis presented with progressive loss of visual acuity and was found to have a juxtapapillary uveal melanoma. She was treated with brachytherapy, but the tumor relapsed. She underwent enucleation that revealed mixed spindle and epithelioid uveal melanoma cells with no extraocular or lymphovascular spread. Next-generation sequencing performed on DNA isolated from the enucleation specimen identified a GNAQ R183Q mutation and a PMS1 truncation mutation. Cytogenetic profiling revealed no monosomy 3. These findings raise the possibility that uveal melanomas bearing G protein R183 mutations may have distinct clinicopathologic profiles compared to those with Q209 mutations. Furthermore, this is the first reported case of a mutation in the mismatch repair gene PMS1 associated with uveal melanoma.

20.
Front Psychol ; 10: 784, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024407

RESUMEN

With the rise in social media use, emojis have become a popular addition to text-based communication. The sudden increase in the number and variety of emojis used raises questions about how individuals interpret messages containing emojis. To explore perceptions of emoji usage, we conducted a 2 (Sender Gender: Female or Male) × 2 (Emoji Type: Affectionate or Friendly) between-groups experiment to examine the appropriateness and likability of each of four hypothetical text messages sent to a woman from either a male or female coworker. In general, we predicted that text messages containing affectionate emojis (i.e., kissing-face and heart emoji) would be perceived as more appropriate and likable when they came from female than from male senders, whereas messages containing less overtly affectionate (but still friendly) emojis (i.e., smiling-face emoji) would be considered equally appropriate and likable whether it came from female or male senders. As predicted, the results confirmed that texts with affectionate emojis were judged as more appropriate and likable when they came from women than from men. However, texts with less affectionate but friendly emojis were judged as equally appropriate-but more likable-when they came from men than when they came from women. Taken together, our results indicate that gender and emoji choice influence perceptions, and therefore people should consider how emoji choice could impact the reception of their message.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA