Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(16): 1628-1645, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38227935

RESUMEN

ABSTRACT: CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.


Asunto(s)
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Adulto , Humanos , Antifúngicos/uso terapéutico , Disbiosis/etiología , Daunorrubicina , Leucemia Mieloide Aguda/tratamiento farmacológico , Citarabina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Homeostasis
2.
EMBO Rep ; 22(1): e50500, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33245190

RESUMEN

The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.


Asunto(s)
Aldehído Oxidorreductasas , Mitofagia , Aldehído Oxidorreductasas/metabolismo , Senescencia Celular , Oxidación-Reducción , Estrés Oxidativo/genética
3.
J Infect Dis ; 225(9): 1675-1679, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34910807

RESUMEN

Chronic immune activation is the key pathogenetic event of Mycobacterium tuberculosis-human immunodeficiency virus (HIV) coinfection. We assessed the therapeutic value of phosphatidylserine-liposome (PS-L) in an in vitro model of M. tuberculosis-HIV coinfection. PS-L reduced nuclear factor-κB activation and the downstream production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 in bacille Calmette-Guérin-infected macrophages and of TNF-α and IL-1ß in M. tuberculosis-infected and M. tuberculosis-HIV-coinfected macrophages. Importantly, a significant reduction of intracellular M. tuberculosis viability and HIV replication were also observed. These results support the further exploitation of PS-L as host-directed therapy for M. tuberculosis-HIV coinfection.


Asunto(s)
Coinfección , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Infecciones por VIH/complicaciones , Humanos , Liposomas , Macrófagos , Fosfatidilserinas , Tuberculosis/complicaciones , Tuberculosis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Replicación Viral
4.
Clin Immunol ; 178: 20-28, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26732860

RESUMEN

Activated PI3-kinase delta syndrome (APDS) was recently reported as a novel primary immunodeficiency caused by heterozygous gain-of-function mutations in PIK3CD gene. Here we describe immunological studies in a 19year old APDS patient for whom genetic diagnosis was discovered by Whole Exome Sequencing (WES) analysis. In addition to the progressive lymphopenia and defective antibody production we showed that the ability of the patient's B cells to differentiate in vitro is severely reduced. An in depth analysis of the myeloid compartment showed an increased expression of CD83 activation marker on monocytes and mono-derived DC cells. Moreover, monocytes-derived macrophages (MDMs) failed to solve the Mycobacterium bovis bacillus Calmette Guèrin (BCG) infection in vitro. Selective p110δ inhibitor IC87114 restored the MDM capacity to kill BCG in vitro. Our data show that the constitutive activation of Akt-mTOR pathway induces important alterations also in the myeloid compartment providing new insights in order to improve the therapeutic approach in these patients.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Síndromes de Inmunodeficiencia/inmunología , Macrófagos/inmunología , Adenina/análogos & derivados , Adenina/farmacología , Diferenciación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/inmunología , Humanos , Síndromes de Inmunodeficiencia/genética , Técnicas In Vitro , Inflamación , Linfopenia/genética , Linfopenia/inmunología , Macrófagos/efectos de los fármacos , Masculino , Mycobacterium bovis/inmunología , Enfermedades de Inmunodeficiencia Primaria , Proteínas Proto-Oncogénicas c-akt/inmunología , Quinazolinas/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/inmunología , Adulto Joven
5.
Cytometry A ; 91(11): 1115-1124, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29072808

RESUMEN

Annexin-V/propidium iodide method (A-V/PI) is a common flow cytometric method for the multiparametric analysis of cells in apoptosis. However, A-V/PI does not permit fixation and/or permeabilization of cells making impossible evaluation of intracellular markers, restricting the analysis in a narrow time frame after staining and excluding the possibility to study pathogen-infected cells. We developed a method permitting fixation and permeabilization of stained cells: Fixed Apoptotic/Necrotic (FAN) cells test. FAN relies on the same principle of A-V/PI, but uses reagents that maintain their binding and fluorescence characteristics after fixation/permeabilization: a fluorochrome-labeled anti-phosphatidylserine antibody and fluorescent amine-binding dyes. FAN was tested to discriminate apoptotic and necrotic cells using different stimuli on several cell types and results were always comparable to those obtained using A-V/PI. FAN, unlike A-V/PI, permitted to correlate cell death with intracellular and surface markers expression and to perform cytometry even two weeks after sample preparation. As fixation of stained cells inactivates infective pathogens, we used FAN in an in vitro model of Mycobacterium tuberculosis (Mtb) infection of macrophages to monitor cellular infection and cell death induction. Using a red-fluorescent Mtb, fluorochrome labeled anti-TNF-α and anti-MHC class II monoclonal antibodies, FAN permitted to establish that the extent of macrophage death correlates with intracellular Mtb content and that dying cells accumulate TNF-α and down-modulate MHC class II molecules. Results suggest that FAN may represent an additional tool to study programmed cell death particularly useful when fixation procedures are required for a safe infected sample analysis or to comparatively analyze multiple samples. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Rastreo Celular/métodos , Citometría de Flujo/métodos , Necrosis/patología , Anexina A5/química , Apoptosis/efectos de los fármacos , Fijadores/química , Colorantes Fluorescentes/química , Humanos , Propidio/química , Coloración y Etiquetado/métodos
6.
J Immunol ; 191(1): 274-82, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23733870

RESUMEN

Dormancy is defined as a stable but reversible nonreplicating state of Mycobacterium tuberculosis. It is currently thought that dormant M. tuberculosis (D-Mtb) is responsible for latent tuberculosis (TB) infection. Recently, D-Mtb was also shown in sputa of patients with active TB, but the capacity of D-Mtb to stimulate specific immune responses was not investigated. We observed that purified protein derivative-specific human CD4(+) T lymphocytes recognize mycobacterial Ags more efficiently when macrophages are infected with D-Mtb instead of replicating M. tuberculosis (R-Mtb). The different Ag recognition occurs even when the two forms of mycobacteria equally infect and stimulate macrophages, which secrete the same cytokine pattern and express MHC class I and II molecules at the same levels. However, D-Mtb but not R-Mtb colocalizes with mature phagolysosome marker LAMP-1 and with vacuolar proton ATPase in macrophages. D-Mtb, unlike R-Mtb, is unable to interfere with phagosome pH and does not inhibit the proteolytic efficiency of macrophages. We show that D-Mtb downmodulates the gene Rv3875 encoding for ESAT-6, which is required by R-Mtb to block phagosome maturation together with Rv3310 gene product SapM, previously shown to be downregulated in D-Mtb. Thus, our results indicate that D-Mtb cannot escape MHC class II Ag-processing pathway because it lacks the expression of genes required to block the phagosome maturation. Data suggest that switching to dormancy not only represents a mechanism of survival in latent TB infection, but also a M. tuberculosis strategy to modulate the immune response in different stages of TB.


Asunto(s)
Tuberculosis Latente/inmunología , Activación de Linfocitos/inmunología , Mycobacterium tuberculosis/inmunología , Fagosomas , Subgrupos de Linfocitos T/inmunología , Células Dendríticas/inmunología , Humanos , Evasión Inmune , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Macrófagos/inmunología , Monocitos/inmunología , Mycobacterium tuberculosis/crecimiento & desarrollo , Fagosomas/inmunología , Fagosomas/microbiología , Subgrupos de Linfocitos T/microbiología , Subgrupos de Linfocitos T/patología
7.
Proc Natl Acad Sci U S A ; 109(21): E1360-8, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22538807

RESUMEN

We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca(2+) influx, (iii) promote Ca(2+)-dependent maturation of phagolysosomes containing Mycobacterium tuberculosis (MTB), (iv) induce Ca(2+)-dependent reactive oxygen species (ROS) production, (v) inhibit intracellular mycobacterial growth in differentiated THP-1 cells as well as in type-1 and -2 human macrophages, and (vi) down-regulate tumor necrosis factor (TNF)-α, interleukin (IL)-12, IL-1ß, IL-18, and IL-23 and up-regulate transforming growth factor (TGF)-ß without altering IL-10, IL-27, and IL-6 mRNA expression. Also, ABL/PA promoted intracellular killing of M. tuberculosis in bronchoalveolar lavage cells from patients with active pulmonary tuberculosis. Furthermore, the treatment of MTB-infected mice with ABL/PA, in combination or not with isoniazid (INH), dramatically reduced lung and, to a lesser extent, liver and spleen mycobacterial loads, with a concomitant 10-fold reduction of serum TNF-α, IL-1ß, and IFN-γ compared with that in untreated mice. Altogether, these results suggest that apoptotic body-like liposomes may be used as a Janus-faced immunotherapeutic platform to deliver polar secondary lipid messengers, such as PA, into phagocytes to improve and recover phagolysosome biogenesis and pathogen killing while limiting the inflammatory response.


Asunto(s)
Liposomas/farmacología , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/inmunología , Adulto , Animales , Antituberculosos/farmacología , Apoptosis/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Calcio/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/inmunología , Isoniazida/farmacología , Leucemia Monocítica Aguda , Liposomas/inmunología , Liposomas/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Fagocitosis/inmunología , Fosfatidilserinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Sensors (Basel) ; 14(7): 11672-81, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988382

RESUMEN

Flex sensors can be usefully adopted as mechanical-electrical transducers to measure human joint movements, since their electrical resistance varies proportionally to the angle assumed by the joint under measure. Over time, these sensors have been investigated in terms of mechanical and electrical behavior, but no reports have detailed the possibility of their adoption not just on top but under the human skin of the joint. To this aim, our work investigated in vitro the pyrogenic potential and cytotoxicity of some commercially available flex sensors as a first step toward the necessary requirements regarding their biocompatibility, to predict possible foreign body reactions when used in vivo. Results demonstrated that some specific flex sensors satisfy such requirements.


Asunto(s)
Artrometría Articular/efectos adversos , Artrometría Articular/instrumentación , Queratinocitos/fisiología , Postura/fisiología , Prótesis e Implantes/efectos adversos , Rango del Movimiento Articular/fisiología , Transductores/efectos adversos , Línea Celular , Proliferación Celular , Transferencia de Energía/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Calor , Humanos , Queratinocitos/citología , Temperatura
9.
Cell Microbiol ; 14(3): 356-67, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22050772

RESUMEN

The role and function of PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) remains elusive. In this study for the first time, Mtb isogenic mutants missing selected PE_PGRSs were used to investigate their role in the pathogenesis of tuberculosis (TB). We demonstrate that the MtbΔPE_PGRS30 mutant was impaired in its ability to colonize lung tissue and to cause tissue damage, specifically during the chronic steps of infection. Inactivation of PE_PGRS30 resulted in an attenuated phenotype in murine and human macrophages due to the inability of the Mtb mutant to inhibit phagosome-lysosome fusion. Using a series of functional deletion mutants of PE_PGRS30 to complement MtbΔPE_PGRS30, we show that the unique C-terminal domain of the protein is not required for the full virulence. Interestingly, when Mycobacterium smegmatis recombinant strain expressing PE_PGRS30 was used to infect macrophages or mice in vivo, we observed enhanced cytotoxicity and cell death, and this effect was dependent upon the PGRS domain of the protein.Taken together these results indicate that PE_PGRS30 is necessary for the full virulence of Mtb and sufficient to induce cell death in host cells by the otherwise non-pathogenic species M. smegmatis, clearly demonstrating that PE_PGRS30 is an Mtb virulence factor.


Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/microbiología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno , Humanos , Ratones , Ratones Endogámicos BALB C , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Fagosomas/microbiología , Estructura Terciaria de Proteína , Virulencia
10.
Biomaterials ; 292: 121930, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493716

RESUMEN

Current available treatments of Multiple Sclerosis (MS) reduce neuroinflammation acting on different targets on the immune system, but potentially lead to severe side effects and have a limited efficacy in slowing the progression of the disease. Here, we evaluated in vitro the immunomodulatory potential of a new class of nanoparticles - liposomes, constituted by a double-layer of phosphatidylserine (PSCho/PS), and double-faced, with an outer layer of phosphatidylserine and an inner layer of phosphatidic acid (PSCho/PA), either alone or in the presence of the myelin basic protein (MBP) peptide (residues 85-99) (PSCho/PS-MBP and PSCho/PA-MBP). Results showed that PSCho/PS are equally and efficiently internalized by pro- and anti-inflammatory macrophages (M1 and M2 respectively), while PSCho/PA were internalized better by M2 than M1. PSCho/PS liposomes were able to inhibit the secretion of innate pro-inflammatory cytokine IL-1ß. PSCho/PS liposomes expanded Tregs, reducing Th1 and Th17 cells, while PSCho/PA liposomes were unable to dampen pro-inflammatory T cells and to promote immune-regulatory phenotype (Treg). The ability of PSCho/PS liposomes to up-regulate Treg cells was more pronounced in MS patients with high basal expression of M2 markers. PSCho/PS liposomes were more effective in decreasing Th1 (but not Th17) cells in MS patients with a disease duration >3 months. On the other hand, down-modulation of Th17 cells was evident in MS patients with active, Gadolinium enhancing lesions at MRI and in MS patients with a high basal expression of M1-associated markers in the monocytes. The same findings were observed for the modulation of MBP-driven Th1/Th17/Treg responses. These observations suggest that early MS associate to a hard-wired pro-Th1 phenotype of M1 that is lost later during disease course. On the other hand, acute inflammatory events reflect a temporary decrease of M2 phenotype that however is amenable to restauration upon treatment with PSCho/PS liposomes. Thus, together these data indicate that monocytes/macrophages may play an important regulatory function during MS course and suggest a role for PSCho/PS and PSCho/PS-MBP as new therapeutic tools to dampen the pro-inflammatory immune responses and to promote its regulatory branch.


Asunto(s)
Esclerosis Múltiple , Nanopartículas , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Liposomas/metabolismo , Fosfatidilserinas , Macrófagos/metabolismo , Fenotipo
11.
Biomolecules ; 13(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371504

RESUMEN

Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung. The aim of this work is to employ Chitosan or ε-poly-L-lysine decoration for improving the properties of a novel liposomes composed by hydrogenated phosphatidyl-choline from soybean (HSPC) and anionic 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol sodium salt (DPPG) able to entrap Rifampicin. A deep physicochemical characterization of polymer-decorated liposomes shows that both polymers improve mucoadhesion without affecting liposome features and Rifampicin entrapment efficiency. Therapeutic activity on Mabs-infected macrophages demonstrates an effective antibacterial effect of ε-poly-L-lysine liposomes with respect to chitosan-decorated ones. Altogether, these results suggest a possible use of ε-PLL liposomes to improve antibiotic delivery in the lung.


Asunto(s)
Quitosano , Mycobacterium abscessus , Humanos , Liposomas/química , Rifampin/farmacología , Rifampin/uso terapéutico , Polilisina , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polímeros
12.
Microb Pathog ; 53(3-4): 135-46, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22771837

RESUMEN

Mycobacterium tuberculosis (MTB) colony morphology was associated to the pathogen's virulence. We isolated a new MTB H37Rv smooth colony, which only appeared following human macrophages (MDM) infection. The new phenotype was Alcohol-Acid resistant, but devoid of a covering capsule and biofilm defective. We ascertained that there were no deletions in the Rv0096-Rv0101 PDIM Operon, but that its expression was repressed as compared to MTB wild type (wt). Its lipid composition displayed lower PDIM components and higher TAG as compared to wt. In MDM it induced the sigma factors sigB, sigI and sigL expression vs. synthetic medium culture, while it repressed other six sigma factors. It also induced, significantly more than wt, mprA, a mycobacterial persistence regulator. It was phagocytosed more than wt by MDM, where it grew significantly less, but persisted therein till 14 days infection. It induced significantly less IFN-γ, IL-12 and IL-27 transcription than wt in infected MDM, while it increased the transcription of inducible NOS. It resided in mature, LAMP-3 positive phagolysosomes, where it never formed cords. This apparently "weaker" colony might represent an adaptive intracellular phenotype, whose infection may be less productive, but probably better equipped for a long lasting persistence in mildly activated host cells.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Macrófagos/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/genética , Operón , Tuberculosis/microbiología , Proteínas Bacterianas/metabolismo , Células Cultivadas , Regulación hacia Abajo , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo , Tuberculosis/genética , Tuberculosis/inmunología
13.
Microorganisms ; 10(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35336061

RESUMEN

The breadth of the antimicrobial resistance (AMR) problem exposes humankind to serious threats, which could lead, in the near future, to a worrisome raising of mortality and morbidity rates due to infections by "bad bugs" [...].

14.
Biomed Res Int ; 2022: 7741397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872852

RESUMEN

We report the first data on 25-hydroxyvitamin D plasma levels in natural populations of three species of land iguana endemic to the Galápagos Islands (Conolophus marthae, C. subcristatus, and C. pallidus). The pigment is present throughout the whole body in the skin of C. subcristatus and C. pallidus. On the contrary, pigment is not present in the skin of an extended part of the body in C. marthae. The only existing population of C. marthae is syntopic with a population of C. subcristatus, and the two species are closely related. These circumstances would suggest that, under the assumption that the species show a similar basking behavior and in the absence of compensatory mechanisms, lighter pigmentation should favor higher vitamin D levels. Thus, C. marthae, compared with C. subcristatus in Wolf Volcano, could show higher levels of 25(OH)D plasma levels, or equal, if compensatory mechanisms exist. The three species showed levels in the range of average values for healthy iguanas. However, contrary to the expectation, C. marthae consistently exhibited the lowest 25(OH)D plasma levels. We discuss possible factors affecting vitamin concentration and hypothesize that C. marthae may use the habitat to limit exposure to the high UVB irradiation at Wolf Volcano.


Asunto(s)
Iguanas , Lagartos , Animales , Ecuador , Vitamina D/análogos & derivados
15.
Front Immunol ; 13: 835417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237274

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen that is very difficult to treat mainly due to its high propensity to acquire complex resistance traits. Notably, multidrug resistance (MDR)-Klebsiella pneumoniae (KP) infections are responsible for 22%-72% of mortality among hospitalized and immunocompromised patients. Although treatments with new drugs or with combined antibiotic therapies have some degree of success, there is still the urgency to investigate and develop an efficient approach against MDR-KP infections. In this study, we have evaluated, in an in vitro model of human macrophages, the efficacy of a combined treatment consisting of apoptotic body-like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) and φBO1E, a lytic phage specific for the major high-risk clone of KPC-positive MDR-KP. Results show that ABL/PI5P did not affect in a direct manner KKBO-1 viability, being able to reduce only the intracellular KKBO-1 bacterial load. As expected, φBO1E was effective mainly on reducing extracellular bacilli. Importantly, the combination of both treatments resulted in a simultaneous reduction of both intracellular and extracellular bacilli. Moreover, the combined treatment of KKBO-1-infected cells reduced proinflammatory TNF-α and IL-1ß cytokines and increased anti-inflammatory TGF-ß cytokine production. Overall, our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with MDR pathogens such as MDR-KP.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae
16.
Front Microbiol ; 13: 979610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188006

RESUMEN

Multi drug resistant (MDR) bacteria are insensitive to the most common antibiotics currently in use. The spread of antibiotic-resistant bacteria, if not contained, will represent the main cause of death for humanity in 2050. The situation is even more worrying when considering patients with chronic bacterial infections, such as those with Cystic Fibrosis (CF). The development of alternative approaches is essential and novel therapies that combine exogenous and host-mediated antimicrobial action are promising. In this work, we demonstrate that asymmetric phosphatidylserine/phosphatidic acid (PS/PA) liposomes administrated both in prophylactic and therapeutic treatments, induced a reduction in the bacterial burden both in wild-type and cftr-loss-of-function (cftr-LOF) zebrafish embryos infected with Pseudomonas aeruginosa (Pa) PAO1 strain (PAO1). These effects are elicited through the enhancement of phagocytic activity of macrophages. Moreover, the combined use of liposomes and a phage-cocktail (CKΦ), already validated as a PAO1 "eater", improves the antimicrobial effects of single treatments, and it is effective also against CKΦ-resistant bacteria. We also address the translational potential of the research, by evaluating the safety of CKΦ and PS/PA liposomes administrations in in vitro model of human bronchial epithelial cells, carrying the homozygous F508del-CFTR mutation, and in THP-1 cells differentiated into a macrophage-like phenotype with pharmacologically inhibited CFTR. Our results open the way to the development of novel pharmacological formulations composed of both phages and liposomes to counteract more efficiently the infections caused by Pa or other bacteria, especially in patients with chronic infections such those with CF.

17.
Front Immunol ; 13: 830788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663973

RESUMEN

A strategy adopted to combat human immunodeficiency virus type-1 (HIV-1) infection is based on interfering with virus entry into target cells. In this study, we found that phosphatidylcholine (PC) liposomes reduced the expression of the CD4 receptor in human primary type-1 macrophages but not in CD4+ T cells. The down-regulation was specific to CD4, as any effect was not observed in CCR5 membrane expression. Moreover, the reduction of membrane CD4 expression required the Ca2+-independent protein kinase C (PKC), which in turn mediated serine phosphorylation in the intracytoplasmic tail of the CD4 receptor. Serine phosphorylation of CD4 was also associated with its internalization and degradation in acidic compartments. Finally, the observed CD4 downregulation induced by PC liposomes in human primary macrophages reduced the entry of both single-cycle replication and replication competent R5 tropic HIV-1. Altogether, these results show that PC liposomes reduce HIV entry in human macrophages and may impact HIV pathogenesis by lowering the viral reservoir.


Asunto(s)
Infecciones por VIH , VIH-1 , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/metabolismo , VIH-1/fisiología , Humanos , Liposomas , Macrófagos/metabolismo , Fosfatidilcolinas/farmacología , Serina
18.
Microbiol Spectr ; 10(1): e0254621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080463

RESUMEN

Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and ß-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.


Asunto(s)
Antibacterianos/administración & dosificación , Fibrosis Quística/inmunología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Fosfatos de Fosfatidilinositol/administración & dosificación , Amicacina/administración & dosificación , Amicacina/química , Animales , Antibacterianos/química , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Femenino , Humanos , Liposomas/química , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Mycobacterium no Tuberculosas/etiología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/fisiología , Fagosomas/inmunología , Fosfatos de Fosfatidilinositol/química , Especies Reactivas de Oxígeno/inmunología
19.
Cell Immunol ; 271(1): 1-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21703599

RESUMEN

Lysophospholipids may play an important protective role during primary infection of Mycobacterium tuberculosis (MTB) by enhancing innate antimycobacterial immune response of both macrophages and alveolar epithelial cells. Here, we show that treatment with lysophosphatidic acid (LPA) of mice aerogenically infected with MTB immediately after infection results in a significant early reduction of pulmonary CFUs and of histopathological damage in comparison with control mice. In contrast, treatment of acute disease does not result in any improvement of both microbiological and histopathological parameters. Altogether, these results show that LPA treatment can exert protective effect if administrated during primary infection, only.


Asunto(s)
Pulmón/efectos de los fármacos , Lisofosfolípidos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Pulmonar/tratamiento farmacológico , Enfermedad Aguda , Animales , Recuento de Colonia Microbiana , Femenino , Pulmón/inmunología , Pulmón/microbiología , Lisofosfolípidos/inmunología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Esfingosina/análogos & derivados , Esfingosina/inmunología , Esfingosina/farmacología , Factores de Tiempo , Resultado del Tratamiento , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología
20.
Pharmaceutics ; 13(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34371761

RESUMEN

Treatment of pulmonary infections caused by Mycobacterium abscessus are extremely difficult to treat, as this species is naturally resistant to many common antibiotics. Liposomes are vesicular nanocarriers suitable for hydrophilic and lipophilic drug loading, able to deliver drugs to the target site, and successfully used in different pharmaceutical applications. Moreover, liposomes are biocompatible, biodegradable and nontoxic vesicles and nebulized liposomes are efficient in targeting antibacterial agents to macrophages. The present aim was to formulate rifampicin-loaded liposomes (RIF-Lipo) for lung delivery, in order to increase the local concentration of the antibiotic. Unilamellar liposomal vesicles composed of anionic DPPG mixed with HSPC for rifampicin delivery were designed, prepared, and characterized. Samples were prepared by using the thin-film hydration method. RIF-Lipo and unloaded liposomes were characterized in terms of size, ζ-potential, bilayer features, stability and in different biological media. Rifampicin's entrapment efficiency and release were also evaluated. Finally, biological activity of RIF-loaded liposomes in Mycobacterium abscessus-infected macrophages was investigated. The results show that RIF-lipo induce a significantly better reduction of intracellular Mycobacterium abscessus viability than the treatment with free drug. Liposome formulation of rifampicin may represent a valuable strategy to enhance the biological activity of the drug against intracellular mycobacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA