Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Pharmacol ; 15: 1367581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681192

RESUMEN

Introduction: Drug development is systemically inefficient. Research and development costs for novel therapeutics average hundreds of millions to billions of dollars, with the overall likelihood of approval estimated to be as low as 6.7% for oncology drugs. Over half of these failures are due to a lack of drug efficacy. This pervasive and repeated low rate of success exemplifies how preclinical models fail to adequately replicate the complexity and heterogeneity of human cancer. Therefore, new methods of evaluation, early in the development trajectory, are essential both to rule-in and rule-out novel agents with more rigor and speed, but also to spare clinical trial patients from the potentially toxic sequelae (high risk) of testing investigational agents that have a low likelihood of producing a response (low benefit). Methods: The clinical in vivo oncology (CIVO®) platform was designed to change this drug development paradigm. CIVO precisely delivers microdose quantities of up to 8 drugs or combinations directly into patient tumors 4-96 h prior to planned surgical resection. Resected tissue is then analyzed for responses at each site of intratumoral drug exposure. Results: To date, CIVO has been used safely in 6 clinical trials, including 68 subjects, with 5 investigational and 17 approved agents. Resected tissues were analyzed initially using immunohistochemistry and in situ hybridization assays (115 biomarkers). As technology advanced, the platform was paired with spatial biology analysis platforms, to successfully track anti-neoplastic and immune-modulating activity of the injected agents in the intact tumor microenvironment. Discussion: Herein we provide a report of the use of CIVO technology in patients, a depiction of the robust analysis methods enabled by this platform, and a description of the operational and regulatory mechanisms used to deploy this approach in synergistic partnership with pharmaceutical partners. We further detail how use of the CIVO platform is a clinically safe and scientifically precise alternative or complement to preclinical efficacy modeling, with outputs that inform, streamline, and de-risk drug development.

2.
Nat Genet ; 36(3): 304-12, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981515

RESUMEN

We developed a versatile, high-throughput genetic screening strategy by coupling gene mutagenesis and expression profiling technologies. Using a retroviral gene-trap vector optimized for efficient mutagenesis and cloning, we randomly disrupted genes in mouse embryonic stem (ES) cells and amplified them to construct a cDNA microarray. With this gene-trap array, we show that transcriptional target genes of platelet-derived growth factor (PDGF) can be efficiently and reliably identified in physiologically relevant cells and are immediately accessible to genetic studies to determine their in vivo roles and relative contributions to PDGF-regulated developmental processes. The same platform can be used to search for genes of specific biological relevance in a broad array of experimental settings, providing a fast track from gene identification to functional validation.


Asunto(s)
Perfilación de la Expresión Génica , Mutagénesis , Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Secuencia de Bases , Células Cultivadas , Clonación Molecular , Vectores Genéticos , Ratones , Retroviridae/genética , Células Madre/metabolismo
3.
Clin Cancer Res ; 29(18): 3813-3825, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37389981

RESUMEN

PURPOSE: Cancer drug development is currently limited by a paradigm of preclinical evaluation that does not adequately recapitulate the complexity of the intact human tumor microenvironment (TME). To overcome this, we combined trackable intratumor microdosing (CIVO) with spatial biology readouts to directly assess drug effects in patient tumors in situ. EXPERIMENTAL DESIGN: In a first-of-its-kind phase 0 clinical trial, we explored the effects of an investigational stage SUMOylation-activating enzyme (SAE) inhibitor, subasumstat (TAK-981) in 12 patients with head and neck carcinoma (HNC). Patients scheduled for tumor resection received percutaneous intratumor injections of subasumstat and vehicle control 1 to 4 days before surgery, resulting in spatially localized and graded regions of drug exposure (∼1,000-2,000 µm in diameter). Drug-exposed (n = 214) and unexposed regions (n = 140) were compared by GeoMx Digital Spatial Profiler, with evaluation at single-cell resolution in a subset of these by CosMx Spatial Molecular Imager. RESULTS: Localized regions of subasumstat exposure revealed SUMO pathway inhibition, elevation of type I IFN response, and inhibition of cell cycle across all tumor samples. Single-cell analysis by CosMx demonstrated cell-cycle inhibition specific to the tumor epithelium, and IFN pathway induction commensurate with a TME shift from immune-suppressive to immune-permissive. CONCLUSIONS: Pairing CIVO with spatial profiling enabled detailed investigation of response to subasumstat across a diverse sampling of native and intact TME. We demonstrate that drug mechanism of action can be directly evaluated in a spatially precise manner in the most translationally relevant setting: an in situ human tumor.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
4.
Cancer Res ; 77(11): 2869-2880, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28364003

RESUMEN

The vision of a precision medicine-guided approach to novel cancer drug development is challenged by high intratumor heterogeneity and interpatient diversity. This complexity is rarely modeled accurately during preclinical drug development, hampering predictions of clinical drug efficacy. To address this issue, we developed Comparative In Vivo Oncology (CIVO) arrayed microinjection technology to test tumor responsiveness to simultaneous microdoses of multiple drugs directly in a patient's tumor. Here, in a study of 18 canine patients with soft tissue sarcoma (STS), CIVO captured complex, patient-specific tumor responses encompassing both cancer cells and multiple immune infiltrates following localized exposure to different chemotherapy agents. CIVO also classified patient-specific tumor resistance to the most effective agent, doxorubicin, and further enabled assessment of a preclinical autophagy inhibitor, PS-1001, to reverse doxorubicin resistance. In a CIVO-identified subset of doxorubicin-resistant tumors, PS-1001 resulted in enhanced antitumor activity, increased infiltration of macrophages, and skewed this infiltrate toward M1 polarization. The ability to evaluate and cross-compare multiple drugs and drug combinations simultaneously in living tumors and across a diverse immunocompetent patient population may provide a foundation from which to make informed drug development decisions. This method also represents a viable functional approach to complement current precision oncology strategies. Cancer Res; 77(11); 2869-80. ©2017 AACR.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunomodulación/inmunología , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Animales , Línea Celular Tumoral , Perros , Resistencia a Múltiples Medicamentos , Humanos
5.
PLoS One ; 11(6): e0158617, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27359113

RESUMEN

While advances in high-throughput screening have resulted in increased ability to identify synergistic anti-cancer drug combinations, validation of drug synergy in the in vivo setting and prioritization of combinations for clinical development remain low-throughput and resource intensive. Furthermore, there is currently no viable method for prospectively assessing drug synergy directly in human patients in order to potentially tailor therapies. To address these issues we have employed the previously described CIVO platform and developed a quantitative approach for investigating multiple combination hypotheses simultaneously in single living tumors. This platform provides a rapid, quantitative and cost effective approach to compare and prioritize drug combinations based on evidence of synergistic tumor cell killing in the live tumor context. Using a gemcitabine resistant model of pancreatic cancer, we efficiently investigated nine rationally selected Abraxane-based combinations employing only 19 xenografted mice. Among the drugs tested, the BCL2/BCLxL inhibitor ABT-263 was identified as the one agent that synergized with Abraxane® to enhance acute induction of localized apoptosis in this model of human pancreatic cancer. Importantly, results obtained with CIVO accurately predicted the outcome of systemic dosing studies in the same model where superior tumor regression induced by the Abraxane/ABT-263 combination was observed compared to that induced by either single agent. This supports expanded use of CIVO as an in vivo platform for expedited in vivo drug combination validation and sets the stage for performing toxicity-sparing drug combination studies directly in cancer patients with solid malignancies.


Asunto(s)
Paclitaxel Unido a Albúmina/uso terapéutico , Compuestos de Anilina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Paclitaxel Unido a Albúmina/administración & dosificación , Compuestos de Anilina/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Sinergismo Farmacológico , Ratones , Neoplasias Pancreáticas/patología , Sulfonamidas/administración & dosificación
6.
Sci Transl Med ; 7(284): 284ra58, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904742

RESUMEN

A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo. The platform is currently designed for use in animal models of cancer and patients with superficial tumors but can be modified for investigation of deeper-seated malignancies. In xenograft lymphoma models, CIVO microinjection of well-characterized anticancer agents (vincristine, doxorubicin, mafosfamide, and prednisolone) induced spatially defined cellular changes around sites of drug exposure, specific to the known mechanisms of action of each drug. The observed localized responses predicted responses to systemically delivered drugs in animals. In pair-matched lymphoma models, CIVO correctly demonstrated tumor resistance to doxorubicin and vincristine and an unexpected enhanced sensitivity to mafosfamide in multidrug-resistant lymphomas compared with chemotherapy-naïve lymphomas. A CIVO-enabled in vivo screen of 97 approved oncology agents revealed a novel mTOR (mammalian target of rapamycin) pathway inhibitor that exhibits significantly increased tumor-killing activity in the drug-resistant setting compared with chemotherapy-naïve tumors. Finally, feasibility studies to assess the use of CIVO in human and canine patients demonstrated that microinjection of drugs is toxicity-sparing while inducing robust, easily tracked, drug-specific responses in autochthonous tumors, setting the stage for further application of this technology in clinical trials.


Asunto(s)
Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales/métodos , Linfoma/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Animales , Biomarcadores , Línea Celular Tumoral , Ciclofosfamida/análogos & derivados , Ciclofosfamida/química , Perros , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Ratones SCID , Trasplante de Neoplasias , Prednisolona/química , Serina-Treonina Quinasas TOR/metabolismo , Vincristina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA