Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 42(19): e113246, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37575021

RESUMEN

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Microglía , Sinapsis , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/genética , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
2.
Eur J Neurosci ; 44(1): 1779-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27152754

RESUMEN

Diabetic neuropathy is a common, and often debilitating, secondary complication of diabetes mellitus. As pain, hypersensitivity and paraesthesias present in a distal-proximal distribution, symptoms are generally believed to originate from damaged afferents within the peripheral nervous system. Increasing evidence suggests altered processing within the central nervous system in diabetic neuropathy contributes towards somatosensory dysfunction, but whether the accurate coding and relay of peripherally encoded information through the central nervous system is altered in diabetes is not understood. Here, we applied the strengths of the rodent whisker-barrel system to study primary afferent-thalamic processing in diabetic neuropathy. We found that neurons in the thalamic ventral posteromedial nucleus from rats with experimental diabetic neuropathy showed increased firing to precisely graded, multidirectional whisker deflection compared to non-diabetic rats. This thalamic hyperactivity occurred without any overt primary afferent dysfunction, as recordings from the trigeminal ganglion showed these primary afferents to be unaffected by diabetes. These findings suggest that central amplification can substantially transform ascending sensory input in diabetes, even in the absence of a barrage of ectopic primary afferent activity.


Asunto(s)
Potenciales de Acción , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/fisiopatología , Núcleos Talámicos/fisiopatología , Animales , Masculino , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Núcleos Talámicos/citología , Vibrisas/inervación , Vibrisas/fisiología
3.
J Neurosci ; 33(29): 12003-12, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23864687

RESUMEN

In any sensory system, the primary afferents constitute the first level of sensory representation and fundamentally constrain all subsequent information processing. Here, we show that the spike timing, reliability, and stimulus selectivity of primary afferents in the whisker system can be accurately described by a simple model consisting of linear stimulus filtering combined with spike feedback. We fitted the parameters of the model by recording the responses of primary afferents to filtered, white noise whisker motion in anesthetized rats. The model accurately predicted not only the response of primary afferents to white noise whisker motion (median correlation coefficient 0.92) but also to naturalistic, texture-induced whisker motion. The model accounted both for submillisecond spike-timing precision and for non-Poisson spike train structure. We found substantial diversity in the responses of the afferent population, but this diversity was accurately captured by the model: a 2D filter subspace, corresponding to different mixtures of position and velocity sensitivity, captured 94% of the variance in the stimulus selectivity. Our results suggest that the first stage of the whisker system can be well approximated as a bank of linear filters, forming an overcomplete representation of a low-dimensional feature space.


Asunto(s)
Potenciales de Acción/fisiología , Células Receptoras Sensoriales/fisiología , Ganglio del Trigémino/fisiología , Vibrisas/fisiología , Vías Aferentes/fisiología , Animales , Estimulación Física , Ratas
4.
Neuron ; 105(5): 855-866.e5, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31924446

RESUMEN

Recent interest in astrocyte activation states has raised the fundamental question of how these cells, normally essential for synapse and neuronal maintenance, become pathogenic. Here, we show that activation of the unfolded protein response (UPR), specifically phosphorylated protein kinase R-like endoplasmic reticulum (ER) kinase (PERK-P) signaling-a pathway that is widely dysregulated in neurodegenerative diseases-generates a distinct reactivity state in astrocytes that alters the astrocytic secretome, leading to loss of synaptogenic function in vitro. Further, we establish that the same PERK-P-dependent astrocyte reactivity state is harmful to neurons in vivo in mice with prion neurodegeneration. Critically, targeting this signaling exclusively in astrocytes during prion disease is alone sufficient to prevent neuronal loss and significantly prolongs survival. Thus, the astrocyte reactivity state resulting from UPR over-activation is a distinct pathogenic mechanism that can by itself be effectively targeted for neuroprotection.


Asunto(s)
Astrocitos/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades por Prión/metabolismo , Sinapsis/metabolismo , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Memoria , Ratones , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Tapsigargina/farmacología , Transcriptoma , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
5.
Brain Res ; 1648(Pt B): 530-537, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27021956

RESUMEN

Activation of the unfolded protein response (UPR) is emerging as a common theme in neurodegenerative diseases, seen in both human brain tissue and mouse models. Genetic and pharmacological manipulation of the pathway in several mouse models has shown that this is not a passive consequence of the neurodegeneration process. Rather, over-activation of the PERK branch of the UPR directly contributes to disease pathogenesis through the critical reduction in neuronal protein synthesis rates via the phosphorylation of eIF2α. eIF2α-P levels are critical to learning and memory in health also; the sustained high levels in neurodegenerative disease results both in impaired learning and memory and to loss of synapse numbers and function essential for neuronal survival. Pharmacological inhibition of this process is strikingly neuroprotective in several models, leading to the discovery of the first small molecule to prevent neurodegeneration in vivo. Critically, this represents a generic approach for boosting memory and the prevention of neurodegeneration through rescue of synapses across the spectrum of these disorders, with few exceptions, independent of disease-specific proteins. Targeting the UPR, and particularly eIF2α-P-mediated translational failure is emerging as a compelling strategy for rescuing synaptic failure and neuronal loss for new treatments for dementia and neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Sinapsis/patología , Respuesta de Proteína Desplegada/fisiología , Animales , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Sinapsis/fisiología , Respuesta de Proteína Desplegada/genética
6.
Diabetes ; 65(1): 228-38, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26470786

RESUMEN

High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However, our understanding of the molecular mechanisms that cause the marked distal pathology is incomplete. We performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN. We integrated proteomics and metabolomics from the sciatic nerve (SN), the lumbar 4/5 dorsal root ganglia (DRG), and the trigeminal ganglia (TG) of streptozotocin-diabetic and healthy control rats. Even though all tissues showed a dramatic increase in glucose and polyol pathway intermediates in diabetes, a striking upregulation of mitochondrial oxidative phosphorylation and perturbation of lipid metabolism was found in the distal SN that was not present in the corresponding cell bodies of the DRG or the cranial TG. This finding suggests that the most severe molecular consequences of diabetes in the nervous system present in the SN, the region most affected by neuropathy. Such spatial metabolic dysfunction suggests a failure of energy homeostasis and/or oxidative stress, specifically in the distal axon/Schwann cell-rich SN. These data provide a detailed molecular description of the distinct compartmental effects of diabetes on the PNS that could underlie the distal-proximal distribution of pathology.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/metabolismo , Ganglios Espinales/metabolismo , Glucosa/metabolismo , Mitocondrias/metabolismo , Nervio Ciático/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Metabolismo Energético , Fructosa/metabolismo , Homeostasis , Inositol/metabolismo , Metabolismo de los Lípidos , Vértebras Lumbares , Metabolómica , Conducción Nerviosa , Fosforilación Oxidativa , Estrés Oxidativo , Polímeros/metabolismo , Ratas , Ratas Sprague-Dawley , Sorbitol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA