Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Cancer ; 21(1): 193, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632153

RESUMEN

BACKGROUND: KRAS is the most frequently mutated oncogene in cancer, however efforts to develop targeted therapies have been largely unsuccessful. Recently, two small-molecule inhibitors, AMG 510 and MRTX849, have shown promising activity in KRAS G12C-mutant solid tumors. The current study aims to assess the molecular profile of KRAS G12C in colorectal (CRC) and non-small-cell lung cancer (NSCLC) tested in a clinical certified laboratory. METHODS: CRC and NSCLC samples submitted for KRAS testing between 2017 and 2019 were reviewed. CRC samples were tested for KRAS and NRAS by pyrosequencing, while NSCLC samples were submitted to next generation sequencing of KRAS, NRAS, EGFR, and BRAF. RESULTS: The dataset comprised 4897 CRC and 4686 NSCLC samples. Among CRC samples, KRAS was mutated in 2354 (48.1%). Most frequent codon 12 mutations were G12D in 731 samples (14.9%) and G12V in 522 (10.7%), followed by G12C in 167 (3.4%). KRAS mutations were more frequent in females than males (p = 0.003), however this difference was exclusive of non-G12C mutants (p < 0.001). KRAS mutation frequency was lower in the South and North regions (p = 0.003), but again KRAS G12C did not differ significantly (p = 0.80). In NSCLC, KRAS mutations were found in 1004 samples (21.4%). As opposed to CRC samples, G12C was the most common mutation in KRAS, in 346 cases (7.4%). The frequency of KRAS G12C was higher in the South and Southeast regions (p = 0.012), and lower in patients younger than 50 years (p < 0.001). KRAS G12C mutations were largely mutually exclusive with other driver mutations; only 11 NSCLC (3.2%) and 1 CRC (0.6%) cases had relevant co-mutations. CONCLUSIONS: KRAS G12C presents in frequencies higher than several other driver mutations, and may represent a large volume of patients in absolute numbers. KRAS testing should be considered in all CRC and NSCLC patients, independently of clinical or demographic characteristics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Colorrectales/genética , Neoplasias Pulmonares/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , GTP Fosfohidrolasas/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Estudios Retrospectivos
2.
Eur J Med Genet ; 57(11-12): 643-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25241110

RESUMEN

Infantile myofibromatosis (IM) is a rare disorder characterized by the development of benign tumors in the skin, muscle, bone, and viscera. The incidence is 1/150,000 live births and the disease is the most common cause of fibrous tumors in infancy. Cases which lack visceral involvement generally have a more benign course, usually with spontaneous regression of the tumors. On the other hand, the prognosis tends to be unfavorable when there is involvement of vital organs, which can lead to significant mortality. The identification of rare variants in genes that may cause IM is the first step towards the possibility of targeted treatments; however, the molecular pathogenesis of IM is poorly understood. In the present study, we report the results of exome sequence analysis of two brothers diagnosed with visceral multicentric infantile myofibromatosis, and their healthy consanguineous parents. In the two brothers we identified novel homozygous variants in NDRG4 gene (N-myc downregulated gene family member 4) and in RLTPR gene (RGD motif, leucine rich repeats, tropomodulin domain and proline-rich containing). The healthy parents were heterozygous for both variants. Consistent with the phenotype of IM, NDRG4 is a tumor-related gene; its expression has been shown to be decreased in numerous tumor types, suggesting that it might be a tumor suppressor gene. Additionally, studies have demonstrated that NDRG4 may have a role in cell survival and tumor invasion. We thus propose that this homozygous variant in NDRG4 may be the causative variant of the autosomal recessive form of IM in the studied family and that it should be investigated in other cases of autosomal recessive infantile myofibromatosis.


Asunto(s)
Exoma , Proteínas Musculares/genética , Miofibromatosis/congénito , Proteínas del Tejido Nervioso/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Consanguinidad , Análisis Mutacional de ADN , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Miofibromatosis/diagnóstico por imagen , Miofibromatosis/genética , Polimorfismo de Nucleótido Simple , Ultrasonografía
4.
Genet. mol. biol ; 31(4): 920-931, Sept.-Dec. 2008. ilus, graf
Artículo en Inglés | LILACS | ID: lil-501467

RESUMEN

Phakopsora pachyrhizi has dispersed globally and brought severe economic losses to soybean growers. The fungus has been established in Brazil since 2002 and is found nationwide. To gather information on the temporal and spatial patterns of genetic variation in P. pachyrhizi, we sequenced the nuclear internal transcribed spacer regions (ITS1 and ITS2). Total genomic DNA was extracted using either lyophilized urediniospores or lesions removed from infected leaves sampled from 26 soybean fields in Brazil and one field in South Africa. Cloning prior to sequencing was necessary because direct sequencing of PCR amplicons gave partially unreadable electrophoretograms with peak displacements suggestive of multiple sequences with length polymorphism. Sequences were determined from four clones per field. ITS sequences from African or Asian isolates available from the GenBank were included in the analyses. Independent sequence alignments of the ITS1 and ITS2 datasets identified 27 and 19 ribotypes, respectively. Molecular phylogeographic analyses revealed that ribotypes of widespread distribution in Brazil displayed characteristics of ancestrality and were shared with Africa and Asia, while ribotypes of rare occurrence in Brazil were indigenous. The results suggest P. pachyrhizi found in Brazil as originating from multiple, independent long-distance dispersal events.


Asunto(s)
ADN Ribosómico , Glycine max/genética , Variación Genética , Secuencia de Bases , Brasil , Glycine max/microbiología , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA