RESUMEN
In mammalian skin, multiple types of resident cells are required to create a functional tissue and support tissue homeostasis and regeneration. The cells that compose the epithelial stem cell niche for skin homeostasis and regeneration are not well defined. Here, we identify adipose precursor cells within the skin and demonstrate that their dynamic regeneration parallels the activation of skin stem cells. Functional analysis of adipocyte lineage cells in mice with defects in adipogenesis and in transplantation experiments revealed that intradermal adipocyte lineage cells are necessary and sufficient to drive follicular stem cell activation. Furthermore, we implicate PDGF expression by immature adipocyte cells in the regulation of follicular stem cell activity. These data highlight adipogenic cells as skin niche cells that positively regulate skin stem cell activity, and suggest that adipocyte lineage cells may alter epithelial stem cell function clinically.
Asunto(s)
Adipocitos/citología , Folículo Piloso/citología , Piel/citología , Células Madre/citología , Adipogénesis , Animales , Femenino , Humanos , Masculino , Ratones , Modelos Animales , Factor de Crecimiento Derivado de Plaquetas/metabolismoRESUMEN
BACKGROUND: We recently showed the transcription factor Early B cell factor 1 (EBF1) is essential for the last stages of metanephric development, and that mice globally deficient in EBF1 display impaired maturation of peripheral glomeruli. EBF1 is present within multiple glomerular cell types, including the glomerular mesangium and podocytes. METHODS: To identify which cell type is driving the glomerular developmental defects in the global EBF1 knockout mice, we deleted EBF1 from the mesangium/pericytes (Foxd1-cre) or podocytes (Podocin-cre) in mice. RESULTS: Deletion of EBF1 from Foxd1 lineage cells resulted in hypoplastic kidneys, poorly differentiated peripheral glomeruli, and decreased proximal tubular mass in the outer cortex. Renal insufficiency was apparent at P21 when proteinuria presents, fibrosis of both the glomeruli and interstitium rapidly progresses, microthrombi appear, and hematuria develops. Approximately half of the Foxd1+, Ebf1fl/fl mice die before they are 3 months old. Mice with podocyte-targeted deletion of EBF1 exhibited no developmental abnormalities. Mice with Ebf1 deficiency in Foxd1 lineage cells shared characteristics with Ptgs2/COX-2-insufficient models, and mechanistic investigation revealed impaired calcineurin/NFATc1 activation and decreased COX-2 expression. Deletion of COX-2 from the interstitial/mesangial lineage displayed a less severe phenotype than EBF1 deficiency in mice. Overexpressing COX-2 in the EBF1-deficient mice, however, partially restored glomerular development. CONCLUSIONS: The results suggest that EBF1 regulates metanephric development at the last stages of glomerular maturation through its actions in the stromal progenitor (Foxd1+) lineage where it mediates proper regulation of calcineurin/NFAT signaling and COX-2 expression.
Asunto(s)
Ciclooxigenasa 2/genética , Factores de Transcripción Forkhead/genética , Mesangio Glomerular/crecimiento & desarrollo , Mesangio Glomerular/patología , Insuficiencia Renal Crónica/genética , Transactivadores/genética , Animales , Calcineurina/metabolismo , Ciclooxigenasa 2/metabolismo , Fibrosis , Expresión Génica/genética , Mesangio Glomerular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Podocitos/fisiología , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal/genética , Transactivadores/deficienciaRESUMEN
The coordination of multiple cytokines and transcription factors with their downstream signaling pathways has been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B-cell factor 1 (Ebf1), originally identified for B-cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice, we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice, the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the glomerular filtration rate was reduced >66% and the expression of podocyte-derived vascular endothelial growth factor A was decreased compared with wild-type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function.
Asunto(s)
Glomérulos Renales/metabolismo , Transactivadores/metabolismo , Factores de Edad , Albuminuria/genética , Albuminuria/metabolismo , Albuminuria/fisiopatología , Animales , Nitrógeno de la Urea Sanguínea , Diferenciación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Genotipo , Tasa de Filtración Glomerular , Glomérulos Renales/crecimiento & desarrollo , Glomérulos Renales/fisiopatología , Glomérulos Renales/ultraestructura , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Organogénesis , Fenotipo , Podocitos/metabolismo , Podocitos/ultraestructura , Transducción de Señal , Factores de Tiempo , Transactivadores/deficiencia , Transactivadores/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Early B cell factor 1 (EBF1) is a transcription factor expressed by multiple lineages of stromal cells within the bone marrow. While cultures of Ebf1-deficient cells have been demonstrated to have impaired differentiation into either the osteoblast or adipogenic lineage in vitro by several groups, in vivo there has been a nominal consequence of the loss of EBF1 on skeletal development. In this study we used Prx-cre driven deletion of Ebf1 to eliminate EBF1 from the entire mesenchymal lineage of the skeleton and resolve this discrepancy. We report here that EBF1 is expressed primarily in the Mesenchymal Stem and Progenitor Cell (MSPC)-Adipo, MSPC-Osteo, and the Early Mesenchymal Progenitors, and that loss of EBF1 has a plethora of consequences to maintenance of the skeleton throughout adulthood. Stroma from the Prx-cre;Ebf1fl/fl bones had impaired osteogenic differentiation, an age-dependent loss of CFU-F, and elevated senescence accompanying Ebf1-deletion. New bone formation was reduced after 3 months, and resulted in a quiescent bone environment with fewer osteoblasts and an accompanied reduction in osteoclast-mediated remodeling. Consequently, bones were less ductile at a younger age, and deletion of EBF1 dramatically impaired fracture repair. Disruption of EBF1 in perivascular populations also rearranged the vascular network within these bones and disrupted cytokine signaling from key hematopoietic niches resulting in anemia, reductions in B cells, and myeloid skewing of marrow hematopoietic lineages. Mechanistically we observed disrupted BMP signaling within Ebf1-deficient progenitors with reduced SMAD1-phosphorylation, and elevated secretion of the soluble BMP-inhibitor Gremlin from the MSPC-Adipo cells. Ebf1-deficient progenitors also exhibited posttranslational suppression of glucocorticoid receptor expression. Together, these results suggest that EBF1 signaling is required for mesenchymal progenitor mobilization to maintain the adult skeleton, and that the primary action of EBF1 in the early mesenchymal lineage is to promote proliferation, and differentiation of these perivascular cells to sustain a healthy tissue.
Asunto(s)
Diferenciación Celular , Homeostasis , Osteogénesis , Transactivadores , Animales , Transactivadores/metabolismo , Transactivadores/genética , Osteogénesis/genética , Huesos/metabolismo , Huesos/patología , Ratones , Células Madre Mesenquimatosas/metabolismo , Eliminación de Gen , Células del Estroma/metabolismo , Médula Ósea/metabolismo , Osteoblastos/metabolismo , Ratones Endogámicos C57BL , Senescencia Celular/fisiología , Envejecimiento/metabolismo , Microambiente CelularRESUMEN
Iron deficiency is a potent stimulator of fibroblast growth factor 23 (FGF23), a hormonal regulator of phosphate and vitamin D metabolism, that is classically thought to be produced by bone-embedded osteocytes. Here, we show that iron-deficient transmembrane serine protease 6 knockout (Tmprss6-/-) mice exhibit elevated circulating FGF23 and Fgf23 messenger RNA (mRNA) upregulation in the bone marrow (BM) but not the cortical bone. To clarify sites of Fgf23 promoter activity in Tmprss6-/- mice, we introduced a heterozygous enhanced green fluorescent protein (eGFP) reporter allele at the endogenous Fgf23 locus. Heterozygous Fgf23 disruption did not alter the severity of systemic iron deficiency or anemia in the Tmprss6-/- mice. Tmprss6-/-Fgf23+/eGFP mice showed green fluorescence in the vascular regions of BM sections and showed a subset of BM endothelial cells that were GFPbright by flow cytometry. Mining of transcriptomic data sets from mice with normal iron balance revealed higher Fgf23 mRNA in BM sinusoidal endothelial cells (BM-SECs) than that in other BM endothelial cell populations. Anti-GFP immunohistochemistry of fixed BM sections from Tmprss6-/-Fgf23+/eGFP mice revealed GFP expression in BM-SECs, which was more intense than in nonanemic controls. In addition, in mice with intact Tmprss6 alleles, Fgf23-eGFP reporter expression increased in BM-SECs following large-volume phlebotomy and also following erythropoietin treatment both ex vivo and in vivo. Collectively, our results identified BM-SECs as a novel site for Fgf23 upregulation in both acute and chronic anemia. Given the elevated serum erythropoietin in both anemic models, our findings raise the possibility that erythropoietin may act directly on BM-SECs to promote FGF23 production during anemia.
Asunto(s)
Anemia Ferropénica , Eritropoyetina , Animales , Ratones , Anemia Ferropénica/genética , Anemia Ferropénica/metabolismo , Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Eritropoyetina/genética , Eritropoyetina/metabolismo , Hierro , ARN Mensajero/genética , Regulación hacia ArribaRESUMEN
FGF-23 has arisen as an early biomarker of renal dysfunction, but at the onset of chronic kidney disease (CKD), data suggest that FGF-23 may be produced independently of the parathyroid hormone (PTH), 1,25(OH)2 -vitamin D3 signaling axis. Iron status is inversely correlated to the level of circulating FGF-23, and improvement in iron bioavailability within patients correlates with a decrease in FGF-23. Alternately, recent evidence also supports a regulatory role of inflammatory cytokines in the modulation of FGF-23 expression. To determine the identity of the signal from the kidney-inducing upregulation of osteocytic FGF-23 at the onset of CKD, we utilized a mouse model of congenital CKD that fails to properly mature the glomerular capillary tuft. We profiled the sequential presentation of indicators of renal dysfunction, phosphate imbalance, and iron bioavailability and transport to identify the events that initiate osteocytic production of FGF-23 during the onset of CKD. We report here that elevations in circulating intact-FGF-23 coincide with the earliest indicators of renal dysfunction (P14), and precede changes in serum phosphate or iron homeostasis. Serum PTH was also not changed within the first month. Instead, production of the inflammatory protein IL-1ß from the kidney and systemic elevation of it in the circulation matched the induction of FGF-23. IL-1ß's ability to induce FGF-23 was confirmed on bone chips in culture and within mice in vivo. Furthermore, neutralizing antibody to IL-1ß blocked FGF-23 expression in both our congenital model of CKD and a second nephrotoxic serum-mediated model. We conclude that early CKD resembles a situation of primary FGF-23 excess mediated by inflammation. These findings do not preclude that altered mineral availability or anemia can later modulate FGF-23 levels but find that in early CKD they are not the driving stimulus for the initial upregulation of FGF-23. © 2020 American Society for Bone and Mineral Research.
Asunto(s)
Insuficiencia Renal Crónica , Factor de Necrosis Tumoral alfa , Animales , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Factores de Transcripción Forkhead , Humanos , Interleucina-1beta , Riñón , Masculino , Ratones , Minerales , Hormona Paratiroidea , FosfatosRESUMEN
Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others. As a result, there is no specific treatment available to date for CRS, and it is managed only symptomatically to support the deteriorating organ functions and maintain the blood pressure. Therefore, we used the superantigen-induced CRS model in HLA-DR3 transgenic mice, that closely mimics human CRS, to delineate the immunopathogenesis of CRS as well as to validate a novel treatment for CRS. Using this model, we demonstrate that (i) CRS is characterized by a rapid rise in systemic levels of several Th1/Th2/Th17/Th22 type cytokines within a few hours, followed by a quick decline. (ii) Even though multiple organs are affected, small intestinal immunopathology is the major contributor to mortality in CRS. (iii) IFN-γ deficiency significantly protected from lethal CRS by attenuating small bowel pathology, whereas IL-17A deficiency significantly increased mortality by augmenting small bowel pathology. (iv) RNA sequencing of small intestinal tissues indicated that IFN-γ-STAT1-driven inflammatory pathways combined with enhanced expression of pro-apoptotic molecules as well as extracellular matrix degradation contributed to small bowel pathology in CRS. These pathways were further enhanced by IL-17A deficiency and significantly down-regulated in mice lacking IFN-γ. (v) Ruxolitinib, a selective JAK-1/2 inhibitor, attenuated SAg-induced T cell activation, cytokine production, and small bowel pathology, thereby completely protecting from lethal CRS in both WT and IL-17A deficient HLA-DR3 mice. Overall, IFN-γ-JAK-STAT-driven pathways contribute to lethal small intestinal immunopathology in T cell-driven CRS.
Asunto(s)
Infecciones por Coronavirus/patología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Interferón gamma/genética , Interleucina-17/genética , Inhibidores de las Cinasas Janus/uso terapéutico , Neumonía Viral/patología , Pirazoles/uso terapéutico , Animales , COVID-19 , Células Cultivadas , Infecciones por Coronavirus/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/patología , Síndrome de Liberación de Citoquinas/prevención & control , Citocinas/sangre , Citocinas/inmunología , Antígeno HLA-DR3/genética , Intestino Delgado/inmunología , Intestino Delgado/patología , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Noqueados , Nitrilos , Pandemias , Neumonía Viral/tratamiento farmacológico , Pirimidinas , Linfocitos T Colaboradores-Inductores/inmunologíaRESUMEN
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced µCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Asunto(s)
Adipogénesis , Adiposidad , Médula Ósea/patología , Obesidad/patología , Proyectos de Investigación/normas , Informe de Investigación/normas , Animales , Guías como Asunto , Humanos , Agencias Internacionales , Sociedades CientíficasRESUMEN
Osteoclasts are large multinucleated, bone-resorbing cells derived from hematopoietic precursors in response to receptor activator of nuclear factor-kappaB ligand (RANKL). RANKL activates a number of signal transduction pathways, which stimulate, in turn, a series of specific transcription factors that initiate the process of osteoclastogenesis. Perhaps the most important of these is nuclear factor of activated T cells cytoplasmic 1 (NFATc1), a DNA-binding protein that upon activation translocates to the nucleus where it stimulates transcription. The objective of this study was to explore the process whereby RANKL induces NFATc1 and to assess the role of this factor in the activation of an additional key osteoclast target gene. We found that whereas several NFAT members are expressed in RAW264.7 cells, soluble RANKL-induced up-regulation is limited to NFATc1 through a mechanism that is largely autoregulatory. Thus, although we observed the presence of resident NFAT members at the inducible Nfatc1 P1 promoter at very early times after RANKL treatment, a selective and time-dependent increase in the binding of up-regulated NFATc1 to Nfatc1 was observed beginning at 12 h. Several additional factors that are activated by soluble RANKL and also participate in NFATc1 up-regulation include c-Fos and RNA polymerase II. Chromatin immunoprecipitation analysis also revealed a similar, time-dependent accumulation of NFATc1 at multiple sites on the Acp5 promoter, thereby highlighting a central contributing role for NFATc1 in the activation of this gene as well. Our studies provide additional molecular detail regarding the mechanisms through which RANKL induces NFATc1 in osteoclast precursors and into mechanisms by which NFATc1 induces the expression of at least one gene responsible for the osteoclast phenotype.
Asunto(s)
Fosfatasa Ácida/biosíntesis , Huesos/metabolismo , Isoenzimas/biosíntesis , Factores de Transcripción NFATC/biosíntesis , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Fosfatasa Ácida/genética , Animales , Western Blotting , Huesos/enzimología , Línea Celular , Inmunoprecipitación de Cromatina , Homeostasis/fisiología , Isoenzimas/genética , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/antagonistas & inhibidores , Factores de Transcripción NFATC/genética , Osteoclastos/enzimología , Regiones Promotoras Genéticas , Ligando RANK/biosíntesis , Ligando RANK/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fosfatasa Ácida Tartratorresistente , Transcripción Genética , Regulación hacia ArribaRESUMEN
Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast differentiation, and hormones and cytokines that stimulate bone resorption increase RANKL expression in stromal/osteoblastic cells. We have previously shown that PTH and 1,25-dihydroxyvitamin D(3) control murine RANKL gene expression in vitro, in part, via an evolutionarily conserved transcriptional enhancer, designated the distal control region (DCR), located 76 kb upstream from the transcription start site. Herein we describe the phenotype of mice lacking this enhancer. Deletion of the DCR reduced PTH and 1,25-dihydroxyvitamin D(3) stimulation of RANKL mRNA and osteoclast formation in primary bone marrow cultures as well as stimulation of RANKL mRNA in bone. DCR deletion also reduced basal RANKL mRNA levels in bone, thymus, and spleen. Moreover, mice lacking the DCR exhibited increased bone mass and strength. The increase in bone mass was due to reduced osteoclast and osteoblast formation leading to a low rate of bone remodeling similar to that observed in humans and mice with hypoparathyroidism. These findings demonstrate that hormonal control of RANKL expression via the DCR is a critical determinant of the rate of bone remodeling.
Asunto(s)
Densidad Ósea/genética , Remodelación Ósea/genética , Elementos de Facilitación Genéticos , Eliminación de Gen , Mutagénesis Sitio-Dirigida , Ligando RANK/genética , Animales , Huesos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Tejido Linfoide/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hormona Paratiroidea/farmacología , Ligando RANK/metabolismoRESUMEN
Canonical Wnt signaling is essential for bone formation. Activation involves binding of secreted members of the Wnt family of proteins with a membrane receptor Frizzled on osteoblasts, an interaction that is facilitated by LRP5/LRP6 co-receptors. LRP5 is known to play a particularly important role in bone formation such that the loss of this protein results in a reduction in osteoblast number, a delay in mineralization and a reduction in peak BMD. During the course of a VDR ChIP-chip analysis we found that 1,25(OH)(2)D(3) could induce binding of the VDR to sites within the Lrp5 gene locus. Importantly, this interaction between 1,25(OH)(2)D(3)-activated VDR and the Lrp5 gene led to both a modification in chromatin structure within the Lrp5 locus and the induction of LRP5 mRNA transcripts in vivo as well as in vitro. One site within Lrp5 was discovered to confer 1,25(OH)(2)D(3) response to a heterologous promoter in osteoblastic cells, permitting both the identification and characterization of the component VDRE. While the regulatory region in Lrp5 was highly conserved in the human genome, the VDRE was not. Our studies show that 1,25(OH)(2)D(3) can enhance the expression of a critical component of the Wnt signaling pathway which is known to impact osteogenesis.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/genética , Vitamina D/análogos & derivados , Proteínas Wnt/metabolismo , Animales , Secuencia Conservada , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética , Ratas , Secuencias Reguladoras de Ácidos Nucleicos , Vitamina D/farmacologíaRESUMEN
One of the primary regulators of receptor activator of NF-kappaB ligand (RANKL) is 1,25-dihydoxyvitamin D(3) (1,25(OH)(2)D(3)). To elucidate the mechanism whereby 1,25(OH)(2)D(3) activates RANKL expression we screened some 300kb of the RANKL gene locus using a ChIP on chip analysis and identified five potential regulatory regions lying significant distances upstream of the transcription start site (TSS), the farthest over 70kb from the TSS. A direct ChIP analysis confirmed the presence of the VDR/RXR heterodimer at these sites. The binding of the VDR was associated with histone modification and enhanced entry of RNA polymerase II, indicating an important functional consequence to the localization of these transcription factors in response to 1,25(OH)(2)D(3). The region -76kb upstream from the TSS, termed D5, was capable of mediating VDR-dependent transcriptional output in response to 1,25(OH)(2)D(3) in luciferase assays. The identified VDRE in this region was able to confer dramatic 1,25(OH)(2)D(3) sensitivity to heterologous promoters. This region was highly evolutionarily conserved and functionally active in the human RANKL gene as well. We propose that the RANKL gene is regulated via multiple enhancers that while located at significant distances from the TSS, likely form a chromatin hub centered on the RankL promoter.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Ligando RANK/genética , Transcripción Genética/genética , Vitamina D/análogos & derivados , Animales , Línea Celular , Secuencia Conservada , Elementos de Facilitación Genéticos , Humanos , Ratones , Unión Proteica , Ratas , Receptores de Calcitriol/genética , Receptores X Retinoide/genética , Vitamina D/farmacologíaRESUMEN
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) functions as a systemic signal in vertebrate organisms to control the expression of genes whose products are vital to the maintenance of calcium and phosphorus homeostasis. This regulatory capability is mediated by the vitamin D receptor (VDR) which localizes at DNA sites adjacent to the promoter regions of target genes and initiates the complex events necessary for transcriptional modulation. Recent investigations using chromatin immunoprecipitation techniques combined with various gene scanning methodologies have revealed new insights into the location, structure and function of these regulatory regions. In the studies reported here, we utilized the above techniques to identify key enhancer regions that mediate the actions of vitamin D on the calcium ion channel gene TRPV6, the catabolic bone calcium-mobilizing factor gene RankL and the bone anabolic Wnt signaling pathway co-receptor gene LRP5. We also resolve the mechanism whereby 1,25(OH)(2)D(3) autoregulates the expression of its own receptor. The results identify new features of vitamin D-regulated enhancers, including their locations at gene loci, the structure of the VDR binding sites located within, their modular nature and their functional activity. Our studies suggest that vitamin D enhancers regulate the expression of key target genes by facilitating the recruitment of both the basal transcriptional machinery as well as the protein complexes necessary for altered gene expression.
Asunto(s)
Regulación de la Expresión Génica/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Secuencia Conservada , Histonas/metabolismo , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ligando RANK/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Elementos de Respuesta , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Vitamina D/metabolismoRESUMEN
The skeleton is a direct target of vitamin D action, where the hormone modulates the proliferation of osteoblast precursors, their differentiation into mature osteoblasts, and their functional activity. Some of these effects of vitamin D are reminiscent of those orchestrated by the Wnt signaling pathway wherein stimulation of the membrane receptor Frizzled and its coreceptor LRP5 leads to activation of beta-catenin and subsequent transcription-mediated changes in osteoblast biology. Indeed, LRP5 is now known to play a particularly important role in bone formation such that the loss of this component results in a reduction in osteoblast number, a delay in mineralization, and a reduction in peak bone mineral density. Interestingly, we discovered during the course of a vitamin D receptor (VDR) chromatin immunoprecipitation/DNA microarray analysis that 1,25-(OH)2D3 could induce binding of the VDR to sites within the Lrp5 gene locus. VDR and retinoid X receptor binding was evident both in primary osteoblasts as well as in osteoblasts of cell line origin. Importantly, this interaction between 1,25-(OH)2D3-activated VDR and the Lrp5 gene led to both a modification in chromatin structure within the Lrp5 locus and the induction of Lrp5 mRNA transcripts in vivo as well as in vitro. One of these sites within the Lrp5 locus was discovered to confer vitamin D response to a heterologous promoter when introduced into osteoblastic cells, permitting both the identification and characterization of the vitamin D response element located within. Interestingly, additional studies revealed that whereas the regulatory region in the mouse Lrp5 gene was highly conserved in the human genome, the vitamin D response element was not. Our studies show that 1,25-(OH)2D3 can enhance the expression of a critical component of the Wnt signaling pathway that is known to impact osteogenesis.
Asunto(s)
ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Relacionadas con Receptor de LDL/genética , Transcripción Genética/genética , Vitamina D/análogos & derivados , Animales , Huesos/efectos de los fármacos , Huesos/metabolismo , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Secuencia Conservada , Dimerización , Humanos , Intrones/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Polimerasa II/metabolismo , Receptores de Calcitriol/genética , Receptores X Retinoide/genética , Alineación de Secuencia , Vitamina D/farmacología , Elemento de Respuesta a la Vitamina DRESUMEN
Adipocytes were identified in human bone marrow more than a century ago, yet until recently little has been known about their origin, development, function or interactions with other cells in the bone marrow. Little functional significance has been attributed to these cells, a paradigm that still persists today. However, we now know that marrow adipose tissue increases with age and in response to a variety of physiologic induction signals. Bone marrow adipocytes have recently been shown to influence other cell populations within the marrow and can affect whole body metabolism by the secretion of a defined set of adipokines. Recent research shows that marrow adipocytes are distinct from white, brown and beige adipocytes, indicating that the bone marrow is a distinct adipose depot. This review will highlight recent data regarding these areas and the interactions of marrow adipose tissue (MAT) with cells within and outside of the bone marrow.
Asunto(s)
Adipocitos/fisiología , Tejido Adiposo/fisiología , Células de la Médula Ósea/citología , Adipocitos/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Adipogénesis/fisiología , Adipoquinas/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Médula Ósea/metabolismo , Médula Ósea/fisiología , Células de la Médula Ósea/fisiología , Diferenciación Celular/fisiología , Humanos , Ratones , TermogénesisRESUMEN
White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance.
Asunto(s)
Adipocitos/fisiología , Adipogénesis/fisiología , Tejido Adiposo Blanco/citología , Lipólisis/fisiología , Transactivadores/metabolismo , Adipogénesis/genética , Adiposidad , Animales , Células Cultivadas , Diabetes Mellitus/patología , Dieta Alta en Grasa , Femenino , Expresión Génica , Humanos , Hipertrofia , Inflamación/patología , Resistencia a la Insulina/fisiología , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño , Transactivadores/biosíntesis , Transactivadores/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Adipocytes reside in discrete, well-defined depots throughout the body. In addition to mature adipocytes, white adipose tissue depots are composed of many cell types, including macrophages, endothelial cells, fibroblasts, and stromal cells, which together are referred to as the stromal vascular fraction (SVF). The SVF also contains adipocyte progenitors that give rise to mature adipocytes in those depots. Marrow adipose tissue (MAT) or marrow fat has long been known to be present in bone marrow (BM) but its origin, development, and function remain largely unknown. Clinically, increased MAT is associated with age, metabolic diseases, drug treatment, and marrow recovery in children receiving radiation and chemotherapy. In contrast to the other depots, MAT is unevenly distributed in the BM of long bones. Conventional quantitation relies on sectioning of the bone to overcome issues with distribution but is time-consuming, resource intensive, inconsistent between laboratories and may be unreliable as it may miss changes in MAT volume. Thus, the inability to quantitate MAT in a rapid, systematic, and reproducible manner has hampered a full understanding of its development and function. In this chapter, we describe a new technique that couples histochemical staining of lipid using osmium tetroxide with microcomputerized tomography to visualize and quantitate MAT within the medullary canal in three dimensions. Imaging of osmium staining provides a high-resolution map of existing and developing MAT in the BM. Because this method is simple, reproducible, and quantitative, we expect it will become a useful tool for the precise characterization of MAT.
Asunto(s)
Diferenciación Celular , Tetróxido de Osmio/química , Coloración y Etiquetado/métodos , Microtomografía por Rayos X/métodos , Adipogénesis/genética , Tejido Adiposo Blanco/crecimiento & desarrollo , Médula Ósea/crecimiento & desarrollo , Humanos , Células del Estroma/citologíaRESUMEN
It is now well established that important regulatory interactions occur between the cells in the hematopoietic, immune and skeletal systems (osteoimmunology). B lymphocytes (B cells) are responsible for the generation and production of antibodies or immunoglobulins in the body. Together with T cells these lymphocytes comprise the adaptive immune system, which allows an individual to develop specific responses to an infection and retain memory of that infection, allowing for a faster and more robust response if that same infection occurs again. In addition to this immune function, B cells have a close and multifaceted relationship with bone cells. B cells differentiate from hematopoietic stem cells (HSCs) in supportive niches found on endosteal bone surfaces. Cells in the osteoblast lineage support HSC and B cell differentiation in these niches. B cell differentiation is regulated, at least in part, by a series of transcription factors that function in a temporal manner. While these transcription factors are required for B cell differentiation, their loss causes profound changes in the bone phenotype. This is due, in part, to the close relationship between macrophage/osteoclast and B cell differentiation. Cross talk between B cells and bone cells is reciprocal with defects in the RANKL-RANK, OPG signaling axis resulting in altered bone phenotypes. While the role of B cells during normal bone remodeling appears minimal, activated B cells play an important role in many inflammatory diseases with associated bony changes. This review examines the relationship between B cells and bone cells and how that relationship affects the skeleton and hematopoiesis during health and disease.
Asunto(s)
Linfocitos B/fisiología , Enfermedades Óseas Metabólicas , Huesos/citología , Huesos/metabolismo , Animales , Linfocitos B/citología , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Enfermedades Óseas Metabólicas/fisiopatología , Huesos/patología , Huesos/fisiopatología , Diferenciación Celular , Estrógenos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Sistema Inmunológico/fisiología , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismoRESUMEN
We previously reported that mice deficient for the transcription factor early B-cell factor (Ebf1) exhibit markedly increased numbers of osteoblasts, bone formation rate, and serum osteocalcin, but the bone marrow of Ebf1(-/-) mice is also striking in its increased marrow adiposity. The purpose of this work was to analyze the metabolic phenotype that accompanies the altered bone morphology of Ebf1(-/-) mice. Whereas marrow adiposity was increased, deposition of white adipose tissue in other regions of the body was severely reduced (sc 40-50%, abdominally 80-85%). Brown adipose exhibited decreased lipid deposition. Subcutaneous and perigonadal white adipose tissue showed a decrease in mRNA transcripts for peroxisomal proliferator-activated receptor-gamma2 and CCAAT/enhancer-binding protein-beta in Ebf1(-/-) tissue compared with wild type. Circulating levels of leptin were decreased in Ebf1(-/-) animals compared with their littermate controls (down 65-95%), whereas adiponectin remained comparable after 2 wk of age. Serum analysis also found the Ebf1(-/-) animals were hypoglycemic and hypotriglyceridemic. After ip injection of insulin, the serum glucose levels in Ebf1(-/-) mice took longer to recover, and after a glucose challenge the Ebf1(-/-) animals reached serum glucose levels almost twice that of their wild-type counterparts. Measurement of circulating pancreatic hormones revealed normal or reduced insulin levels in the Ebf1(-/-) mice, whereas glucagon was significantly increased (up 1.7- to 8.5-fold). Metabolically the Ebf1(-/-) mice had increased O(2) consumption, CO(2) production, food and water intake, and activity. Markers for gluconeogenesis, however, were decreased in the Ebf1(-/-) mice compared with controls. In conclusion, the Ebf1-deficient animals exhibit defects in adipose tissue deposition with increased marrow adiposity and impaired glucose mobilization.
Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Metabolismo de los Lípidos/fisiología , Lipodistrofia/metabolismo , Transactivadores/metabolismo , Adiponectina/sangre , Animales , Glucemia , Médula Ósea/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Calorimetría , Glucagón/sangre , Insulina/sangre , Leptina/sangre , Lipodistrofia/genética , Ratones , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas , Transactivadores/genéticaRESUMEN
Selective estrogen receptor modulators (SERMs), such as tamoxifen (TAM), have been used extensively for the treatment and prevention of breast cancer and other pathologies associated with aberrant estrogen receptor (ER) signaling. These compounds exhibit cell-selective agonist/antagonist activities as a consequence of their ability to induce different conformational changes in ER, thereby enabling it to recruit functionally distinct transcriptional coregulators. However, the observation that SERMs can also regulate aspects of calcium signaling and apoptosis in an ER-independent manner in some systems suggests that some of the activity of drugs within this class may also arise as a consequence of their ability to interact with targets other than ER. In this study, we demonstrate that 4-hydroxy-TAM (4OHT), an active metabolite of TAM, directly binds to and modulates the transcriptional activity of the aryl hydrocarbon receptor (AHR). Of specific interest was the observation, that in the absence of ER, 4OHT can induce the expression of AHR target genes involved in estradiol metabolism, cellular proliferation, and metastasis in cellular models of breast cancer. The potential role for AHR in SERM pharmacology was further underscored by the ability of 4OHT to suppress osteoclast differentiation in vitro in part through AHR. Cumulatively, these findings provide evidence that it is necessary to reevaluate the relative roles of ER and AHR in manifesting the pharmacological actions and therapeutic efficacy of TAM and other SERMs.