Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Transplant ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642711

RESUMEN

Biopsy-proven acute rejection (BPAR) occurs in approximately 10% of kidney transplant recipients in the first year, making superiority trials unfeasible. iBOX, a quantitative composite of estimated glomerular filtration rate, proteinuria, antihuman leukocyte antigen donor-specific antibody, and + full/- abbreviated kidney histopathology, is a new proposed surrogate endpoint. BPAR's prognostic ability was compared with iBOX in a pooled cohort of 1534 kidney transplant recipients from 4 data sets, including 2 prospective randomized controlled trials. Discrimination analyses showed mean c-statistic differences between both iBOX compared with BPAR of 0.25 (95% confidence interval: 0.17-0.32) for full iBOX and 0.24 (95% confidence interval: 0.16-0.32) for abbreviated iBOX, indicating statistically significantly higher c-statistic values for the iBOX prognosis of death-censored graft survival. Mean (± standard error) c-statistics were 0.81 ± 0.03 for full iBOX, 0.80 ± 0.03 for abbreviated iBOX, and 0.57 ± 0.03 for BPAR. In calibration analyses, predicted graft loss events from both iBOX models were not significantly different from those observed. However, for BPAR, the predicted events were significantly (P < .01) different (observed: 64; predicted: 70; full iBOX: 76; abbreviated iBOX: 173 BPAR). IBOX at 1-year posttransplant is superior to BPAR in the first year posttransplant in graft loss prognostic performance, providing valuable additional information and facilitating the demonstration of superiority of novel immunosuppressive regimens.

2.
Prostate ; 83(6): 547-554, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36632656

RESUMEN

OBJECTIVES: PET-based radiomic metrics are increasingly utilized as predictive image biomarkers. However, the repeatability of radiomic features on PET has not been assessed in a test-retest setting. The prostate-specific membrane antigen-targeted compound 18 F-DCFPyL is a high-affinity, high-contrast PET agent that we utilized in a test-retest cohort of men with metastatic prostate cancer (PC). METHODS: Data of 21 patients enrolled in a prospective clinical trial with histologically proven PC underwent two 18 F-DCFPyL PET scans within 7 days, using identical acquisition and reconstruction parameters. Sites of disease were segmented and a set of 29 different radiomic parameters were assessed on both scans. We determined repeatability of quantification by using Pearson's correlations, within-subject coefficient of variation (wCOV), and Bland-Altman analysis. RESULTS: In total, 230 lesions (177 bone, 38 lymph nodes, 15 others) were assessed on both scans. For all investigated radiomic features, a broad range of inter-scan correlation was found (r, 0.07-0.95), with acceptable reproducibility for entropy and homogeneity (wCOV, 16.0% and 12.7%, respectively). On Bland-Altman analysis, no systematic increase or decrease between the scans was observed for either parameter (±1.96 SD: 1.07/-1.30, 0.23/-0.18, respectively). The remaining 27 tested radiomic metrics, however, achieved unacceptable high wCOV (≥21.7%). CONCLUSION: Many common radiomic features derived from a test-retest PET study had poor repeatability. Only Entropy and homogeneity achieved good repeatability, supporting the notion that those image biomarkers may be incorporated in future clinical trials. Those radiomic features based on high frequency aspects of images appear to lack the repeatability on PET to justify further study.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos , Reproducibilidad de los Resultados , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Medios de Contraste
3.
Am J Transplant ; 23(10): 1496-1506, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735044

RESUMEN

New immunosuppressive therapies that improve long-term graft survival are needed in kidney transplant. Critical Path Institute's Transplant Therapeutics Consortium received a qualification opinion for the iBOX Scoring System as a novel secondary efficacy endpoint for kidney transplant clinical trials through European Medicines Agency's qualification of novel methodologies for drug development. This is the first qualified endpoint for any transplant indication and is now available for use in kidney transplant clinical trials. Although the current efficacy failure endpoint has typically shown the noninferiority of therapeutic regimens, the iBOX Scoring System can be used to demonstrate the superiority of a new immunosuppressive therapy compared to the standard of care from 6 months to 24 months posttransplant in pivotal or exploratory drug therapeutic studies.


Asunto(s)
Trasplante de Riñón , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Terapia de Inmunosupresión , Inmunosupresores/uso terapéutico , Trasplante de Riñón/efectos adversos , Ensayos Clínicos como Asunto
4.
Transpl Int ; 36: 11951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822449

RESUMEN

New immunosuppressive therapies that improve long-term graft survival are needed in kidney transplant. Critical Path Institute's Transplant Therapeutics Consortium received a qualification opinion for the iBOX Scoring System as a novel secondary efficacy endpoint for kidney transplant clinical trials through European Medicines Agency's qualification of novel methodologies for drug development. This is the first qualified endpoint for any transplant indication and is now available for use in kidney transplant clinical trials. Although the current efficacy failure endpoint has typically shown the noninferiority of therapeutic regimens, the iBOX Scoring System can be used to demonstrate the superiority of a new immunosuppressive therapy compared to the standard of care from 6 months to 24 months posttransplant in pivotal or exploratory drug therapeutic studies.


Asunto(s)
Trasplante de Riñón , Humanos , Inmunosupresores/uso terapéutico , Terapia de Inmunosupresión , Rechazo de Injerto/prevención & control
5.
Eur J Nucl Med Mol Imaging ; 49(1): 18-29, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34782911

RESUMEN

Radiopharmaceutical therapy using α-particle emitting radionuclides (αRPT) is a novel treatment modality that delivers highly potent alpha-particles to cancer cells or their environment. We review the advantages and challenges of imaging and dosimetry in implementing αRPT for cancer patients.


Asunto(s)
Neoplasias , Radiofármacos , Partículas alfa/uso terapéutico , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioisótopos , Radiometría , Radiofármacos/uso terapéutico
6.
Eur J Nucl Med Mol Imaging ; 47(4): 816-827, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31741021

RESUMEN

PURPOSE: In Y90 radioembolization, the number of microspheres infused varies by more than a factor of 20 over the shelf-life of the glass radioembolization device. We investigated the effect of the number of Y90 microspheres on normal liver tissue. METHOD: Healthy pigs received lobar radioembolization with glass Y90 microspheres at 4, 8, 12, and 16 days post-calibration, representing a > 20× range in the number of microspheres deposited per milliliter in tissue. Animals were survived for 1-month post-treatment and the livers were explanted and scanned on a micro CT system to fully characterize the microscopic distribution of individual microspheres. A complete 3D microdosimetric evaluation of each liver was performed with a spatially correlated analysis of histopathologic effect. RESULTS: Through whole-lobe microscopic identification of each microsphere, a consistent number of microspheres per sphere cluster was found at 4, 8, and 12 days postcalibration, despite an 8-fold increase in total microspheres infused from days 4 to 12. The additional microspheres instead resulted in more clusters formed and, therefore, a more homogeneous microscopic absorbed dose. The increased absorbed-dose homogeneity resulted in a greater volume fraction of the liver receiving a potentially toxic absorbed dose based on radiobiologic models. Histopathologic findings in the animals support a possible increase in normal liver toxicity in later treatments with more spheres (i.e., ≥ day 12) compared to early treatments with less spheres (i.e., ≤ day 8). CONCLUSION: The microdosimetric evidence presented supports a recommendation of caution when treating large volumes (e.g., right lobe) using glass 90Y microspheres at more than 8 days post-calibration, i.e., after "2nd week" Monday. The favorable normal tissue microscopic distribution and associated low toxicity of first week therapies may encourage opportunities for dose escalation with glass microspheres and could also be considered for patients with decreased hepatic reserve.


Asunto(s)
Braquiterapia , Embolización Terapéutica , Neoplasias Hepáticas , Exposición a la Radiación , Animales , Embolización Terapéutica/efectos adversos , Neoplasias Hepáticas/radioterapia , Microesferas , Porcinos , Radioisótopos de Itrio/efectos adversos
7.
Inverse Probl ; 36(8)2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33071423

RESUMEN

The potential to perform attenuation and scatter compensation (ASC) in single-photon emission computed tomography (SPECT) imaging without a separate transmission scan is highly significant. In this context, attenuation in SPECT is primarily due to Compton scattering, where the probability of Compton scatter is proportional to the attenuation coefficient of the tissue and the energy of the scattered photon and the scattering angle are related. Based on this premise, we investigated whether the SPECT scattered-photon data acquired in list-mode (LM) format and including the energy information can be used to estimate the attenuation map. For this purpose, we propose a Fisher-information-based method that yields the Cramer-Rao bound (CRB) for the task of jointly estimating the activity and attenuation distribution using only the SPECT emission data. In the process, a path-based formalism to process the LM SPECT emission data, including the scattered-photon data, is proposed. The Fisher information method was implemented on NVIDIA graphics processing units (GPU) for acceleration. The method was applied to analyze the information content of SPECT LM emission data, which contains up to first-order scattered events, in a simulated SPECT system with parameters modeling a clinical system using realistic computational studies with 2-D digital synthetic and anthropomorphic phantoms. The method was also applied to LM data containing up to second-order scatter for a synthetic phantom. Experiments with anthropomorphic phantoms simulated myocardial perfusion and dopamine transporter (DaT)-Scan SPECT studies. The results show that the CRB obtained for the attenuation and activity coefficients was typically much lower than the true value of these coefficients. An increase in the number of detected photons yielded lower CRB for both the attenuation and activity coefficients. Further, we observed that systems with better energy resolution yielded a lower CRB for the attenuation coefficient. Overall, the results provide evidence that LM SPECT emission data, including the scattered photons, contains information to jointly estimate the activity and attenuation coefficients.

8.
Med Phys ; 51(4): 3045-3052, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38064591

RESUMEN

BACKGROUND: Recent studies have shown a clear relationship between absorbed dose and tumor response to treatment after hepatic radioembolization. These findings help to create more personalized treatment planning and dosimetry. However, crucial to this goal is the ability to predict the dose distribution prior to treatment. The microsphere distribution is ultimately determined by (i) the hepatic vasculature and the resulting blood flow dynamics and (ii) the catheter position. PURPOSE: To show that pretreatment, intra-procedural imaging of blood flow patterns, as quantified by catheter-directed intra-arterial contrast enhancement, correlate with posttreatment microsphere accumulation and, consequently, absorbed dose. MATERIALS AND METHODS: Patients who participated in a clinical trial (NCT01177007) and for whom both a pretreatment dual-phase contrast-enhanced cone-beam CT (CBCT) and a posttreatment 90Y PET/CT scan were available were included in this retrospective study. Tumors and perfused volumes were manually delineated on the CBCT by an experienced radiologist. The mean, sum, and standard deviation of the voxels in each volume were recorded. The delineations were transferred to the PET-based absorbed dose maps by coregistration of the corresponding CTs. Linear multiple regression was used to correlate pretreatment CBCT enhancement to posttreatment 90Y PET/CT-based absorbed dose in each region. Leave-one-out cross-validation and Bland-Altman analyses were performed on the predicted versus measured absorbed doses. RESULTS: Nine patients, with a total of 23 tumors were included. All presented with hepatocellular carcinoma (HCC). Visually, all patients had a clear correspondence between CBCT enhancement and absorbed dose. The correlation between CBCT enhancement and posttherapy absorbed tumor dose based was strong (R2 = 0.91), and moderate for the non-tumor liver tissue (R2 = 0.61). Limits of agreement were approximately ±55 Gray for tumor tissue. CONCLUSION: There is a linear relationship between pretreatment blood dynamics in HCC tumors and posttreatment absorbed dose, which, if shown to be generalizable, allows for pretreatment tumor absorbed dose prediction.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Radioisótopos de Itrio/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos , Embolización Terapéutica/métodos , Microesferas
9.
J Nucl Med ; 65(8): 1166-1172, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960715

RESUMEN

Image-based dosimetry-guided radiopharmaceutical therapy has the potential to personalize treatment by limiting toxicity to organs at risk and maximizing the therapeutic effect. The 177Lu dosimetry challenge of the Society of Nuclear Medicine and Molecular Imaging consisted of 5 tasks assessing the variability in the dosimetry workflow. The fifth task investigated the variability associated with the last step, dose conversion, of the dosimetry workflow on which this study is based. Methods: Reference variability was assessed by 2 medical physicists using different software, methods, and all possible combinations of input segmentation formats and time points as provided in the challenge. General descriptive statistics for absorbed dose values from the global submissions from participants were calculated, and variability was measured using the quartile coefficient of dispersion. Results: For the liver, which included lesions with high uptake, variabilities of up to 36% were found. The baseline analysis showed a variability of 29% in absorbed dose results for the liver from datasets where lesions included and excluded were grouped, indicating that variation in how lesions in normal liver were treated was a significant source of variability. For other organs and lesions, variability was within 7%, independently of software used except for the local deposition method. Conclusion: The choice of dosimetry method or software had a small contribution to the overall variability of dose estimates.


Asunto(s)
Radiometría , Humanos , Dosis de Radiación , Factores de Tiempo , Internacionalidad , Programas Informáticos , Dosificación Radioterapéutica , Hígado/diagnóstico por imagen , Hígado/efectos de la radiación
10.
Med Phys ; 51(2): 1019-1033, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37482927

RESUMEN

BACKGROUND: Pediatric molecular imaging requires a balance between administering an activity that will yield sufficient diagnostic image quality while maintaining patient radiation exposure at acceptable levels. In current clinical practice, this balance is arrived at by the current North American Consensus Guidelines in which patient weight is used to recommend the administered activity (AA). PURPOSE: We have previously demonstrated that girth (waist circumference at the level of the kidneys) is better at equalizing image quality than patient weight for pediatric Tc-99m DMSA renal function imaging. However, the correlation between image quality (IQ), AA, and patient girth has not been rigorously and systematically developed. In this work, we generate a series of curves showing the tradeoff between AA and IQ as a function of patient girth, providing the data for standards bodies to develop the next generation of dosing guideline for pediatric DMSA SPECT. METHODS: An anthropomorphic phantom series that included variations in age (5, 10, and 15 years), gender (M, F), local body morphometry (5, 10, 50, 90, and 95th girth percentiles), and kidney size (±15% standard size), was used to generate realistic SPECT projections. A fixed and clinically challenging defect-to-organ volume percentage (0.49% of renal cortex value) was used to model a focal defect with zero uptake (i.e., full local loss of renal function). Task-based IQ assessment methods were used to rigorously measure IQ in terms of renal perfusion defect detectability. This assessment was performed at multiple count levels (corresponding to various AAs) for groups of patients that had similar girths and defect sizes. Receiver-operating characteristics (ROC) analysis was applied; the area under the ROC curve (AUC) was used as a figure-of-merit for task performance. Curves showing the tradeoff between AUC and AA were generated for these groups of phantoms. RESULTS: Overall, the girth-based dosing method suggested different amounts of AA compared to weight-based dosing for the phantoms that had a relatively large body weight but a small girth or phantoms with relatively small bodyweight but large girth. Reductions of AA to 62.9% compared to weight-based dosing guidelines can potentially be realized while maintaining a baseline (AUC = 0.80) IQ for certain 15-year-olds who have a relatively small girth and large defect size. Note that the task-based IQ results are heavily dependent on the simulated defect size for the defect detection task and the appropriate AUC value must be decided by the physicians for this diagnostic task. These results are based purely on simulation and are subject to future clinical validation. CONCLUSIONS: The study provides simulation-based IQ-AA data for a girth-based dosing method for pediatric renal SPECT, suggesting that patient waist circumference at the level of kidneys should be considered in selecting the AA needed to achieve an acceptable IQ. This data may be useful for standards bodies to develop girth-based dosing guidelines.


Asunto(s)
Ácido Dimercaptosuccínico de Tecnecio Tc 99m , Tomografía Computarizada de Emisión de Fotón Único , Niño , Humanos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Riñón , Fantasmas de Imagen , Simulación por Computador
11.
Phys Rev Lett ; 110(10): 108102, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23521301

RESUMEN

The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF's crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.


Asunto(s)
Modelos Biológicos , Factor de von Willebrand/química , Agregación Plaquetaria , Conformación Proteica , Estructura Terciaria de Proteína , Desplegamiento Proteico , Termodinámica
12.
J Nucl Cardiol ; 20(1): 84-98, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23151753

RESUMEN

BACKGROUND: Partial volume effects (PVEs) in PET imaging result in incorrect regional activity estimates due to both spill-out and spill-in from activity in neighboring regions. It is important to compensate for both effects to achieve accurate quantification. In this study, an image-based partial volume compensation (PVC) method was developed and validated for cardiac PET. METHODS AND RESULTS: The method uses volume-of-interest (VOI) maps segmented from contrast-enhanced CTA images to compensate for both spill-in and spill-out in each VOI. The PVC method was validated with simulation studies and also applied to images of dog cardiac perfusion PET data. The PV effects resulting from cardiac motion and myocardial uptake defects were investigated and the efficacy of the proposed PVC method in compensating for these effects was evaluated. RESULTS: Results indicate that the magnitude and the direction of PVEs in cardiac imaging change over time. This affects the accuracy of activity distributions estimates obtained during dynamic studies. The defect regions have different PVEs as compared to the normal myocardium. Cardiac motion contributes around 10% to the PVEs. PVC effectively removed both spill-in and spill-out in cardiac imaging. CONCLUSIONS: PVC improved left ventricular wall uniformity and quantitative accuracy. The best strategy for PVC was to compensate for the PVEs in each cardiac phase independently and treat severe uptake defects as independent regions from the normal myocardium.


Asunto(s)
Corazón/diagnóstico por imagen , Miocardio/patología , Tomografía de Emisión de Positrones/métodos , Algoritmos , Animales , Encéfalo/patología , Simulación por Computador , Perros , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los Resultados , Factores de Tiempo , Función Ventricular Izquierda
13.
J Nucl Med ; 64(7): 1109-1116, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024302

RESUMEN

Dosimetry for personalized radiopharmaceutical therapy has gained considerable attention. Many methods, tools, and workflows have been developed to estimate absorbed dose (AD). However, standardization is still required to reduce variability of AD estimates across centers. One effort for standardization is the Society of Nuclear Medicine and Molecular Imaging 177Lu Dosimetry Challenge, which comprised 5 tasks (T1-T5) designed to assess dose estimate variability associated with the imaging protocol (T1 vs. T2 vs. T3), segmentation (T1 vs. T4), time integration (T4 vs. T5), and dose calculation (T5) steps of the dosimetry workflow. The aim of this work was to assess the overall variability in AD calculations for the different tasks. Methods: Anonymized datasets consisting of serial planar and quantitative SPECT/CT scans, organ and lesion contours, and time-integrated activity maps of 2 patients treated with 177Lu-DOTATATE were made available globally for participants to perform dosimetry calculations and submit their results in standardized submission spreadsheets. The data were carefully curated for formal mistakes and methodologic errors. General descriptive statistics for ADs were calculated, and statistical analysis was performed to compare the results of different tasks. Variability in ADs was measured using the quartile coefficient of dispersion. Results: ADs to organs estimated from planar imaging protocols (T2) were lower by about 60% than those from pure SPECT/CT (T1), and the differences were statistically significant. Importantly, the average differences in dose estimates when at least 1 SPECT/CT acquisition was available (T1, T3, T4, T5) were within ±10%, and the differences with respect to T1 were not statistically significant for most organs and lesions. When serial SPECT/CT images were used, the quartile coefficients of dispersion of ADs for organs and lesions were on average less than 20% and 26%, respectively, for T1; 20% and 18%, respectively, for T4 (segmentations provided); and 10% and 5%, respectively, for T5 (segmentation and time-integrated activity images provided). Conclusion: Variability in ADs was reduced as segmentation and time-integration data were provided to participants. Our results suggest that SPECT/CT-based imaging protocols generate more consistent and less variable results than planar imaging methods. Effort at standardizing segmentation and fitting should be made, as this may substantially reduce variability in ADs.


Asunto(s)
Radiometría , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Humanos , Radiometría/métodos , Tomografía Computarizada de Emisión de Fotón Único , Radiofármacos/uso terapéutico
14.
Clin Transl Sci ; 16(9): 1680-1690, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37350196

RESUMEN

Kidney transplantation is the preferred treatment for individuals with end-stage kidney disease. From a modeling perspective, our understanding of kidney function trajectories after transplantation remains limited. Current modeling of kidney function post-transplantation is focused on linear slopes or percent decline and often excludes the highly variable early timepoints post-transplantation, where kidney function recovers and then stabilizes. Using estimated glomerular filtration rate (eGFR), a well-known biomarker of kidney function, from an aggregated dataset of 4904 kidney transplant patients including both observational studies and clinical trials, we developed a longitudinal model of kidney function trajectories from time of transplant to 6 years post-transplant. Our model is a nonlinear, mixed-effects model built in NONMEM that captured both the recovery phase after kidney transplantation, where the graft recovers function, and the long-term phase of stabilization and slow decline. Model fit was assessed using diagnostic plots and individual fits. Model performance, assessed via visual predictive checks, suggests accurate model predictions of eGFR at the median and lower 95% quantiles of eGFR, ranges which are of critical clinical importance for assessing loss of kidney function. Various clinically relevant covariates were also explored and found to improve the model. For example, transplant recipients of deceased donors recover function more slowly after transplantation and calcineurin inhibitor use promotes faster long-term decay. Our work provides a generalizable, nonlinear model of kidney allograft function that will be useful for estimating eGFR up to 6 years post-transplant in various clinically relevant populations.


Asunto(s)
Fallo Renal Crónico , Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Tasa de Filtración Glomerular , Ensayos Clínicos como Asunto , Riñón/fisiología , Fallo Renal Crónico/cirugía
15.
Med Phys ; 39(10): 6118-28, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23039651

RESUMEN

PURPOSE: Peptide receptor radionuclide therapy (PRRT) delivers high absorbed doses to kidneys and may lead to permanent nephropathy. Reliable dosimetry of kidneys is thus critical for safe and effective PRRT. The aim of this work was to assess the feasibility of planning PRRT based on 3D radiobiological dosimetry (3D-RD) in order to optimize both the amount of activity to administer and the fractionation scheme, while limiting the absorbed dose and the biological effective dose (BED) to the renal cortex. METHODS: Planar and SPECT data were available for a patient examined with (111)In-DTPA-octreotide at 0.5 (planar only), 4, 24, and 48 h post-injection. Absorbed dose and BED distributions were calculated for common therapeutic radionuclides, i.e., (111)In, (90)Y and (177)Lu, using the 3D-RD methodology. Dose-volume histograms were computed and mean absorbed doses to kidneys, renal cortices, and medullae were compared with results obtained using the MIRD schema (S-values) with the multiregion kidney dosimetry model. Two different treatment planning approaches based on (1) the fixed absorbed dose to the cortex and (2) the fixed BED to the cortex were then considered to optimize the activity to administer by varying the number of fractions. RESULTS: Mean absorbed doses calculated with 3D-RD were in good agreement with those obtained with S-value-based SPECT dosimetry for (90)Y and (177)Lu. Nevertheless, for (111)In, differences of 14% and 22% were found for the whole kidneys and the cortex, respectively. Moreover, the authors found that planar-based dosimetry systematically underestimates the absorbed dose in comparison with SPECT-based methods, up to 32%. Regarding the 3D-RD-based treatment planning using a fixed BED constraint to the renal cortex, the optimal number of fractions was found to be 3 or 4, depending on the radionuclide administered and the value of the fixed BED. Cumulative activities obtained using the proposed simulated treatment planning are compatible with real activities administered to patients in PRRT. CONCLUSIONS: The 3D-RD treatment planning approach based on the fixed BED was found to be the method of choice for clinical implementation in PRRT by providing realistic activity to administer and number of cycles. While dividing the activity in several cycles is important to reduce renal toxicity, the clinical outcome of fractionated PRRT should be investigated in the future.


Asunto(s)
Riñón/efectos de la radiación , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/radioterapia , Radiobiología/métodos , Planificación de la Radioterapia Asistida por Computador/efectos adversos , Planificación de la Radioterapia Asistida por Computador/métodos , Receptores de Péptidos/metabolismo , Adulto , Humanos , Masculino , Tumores Neuroendocrinos/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Radiometría , Dosificación Radioterapéutica , Tomografía Computarizada de Emisión de Fotón Único
16.
Med Phys ; 39(5): 2346-58, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22559605

RESUMEN

PURPOSE: Yttrium-90 ((90)Y) is one of the most commonly used radionuclides in targeted radionuclide therapy (TRT). Since it decays with essentially no gamma photon emissions, surrogate radionuclides (e.g., (111)In) or imaging agents (e.g., (99m)Tc MAA) are typically used for treatment planning. It would, however, be useful to image (90)Y directly in order to confirm that the distributions measured with these other radionuclides or agents are the same as for the (90)Y labeled agents. As a result, there has been a great deal of interest in quantitative imaging of (90)Y bremsstrahlung photons using single photon emission computed tomography (SPECT) imaging. The continuous and broad energy distribution of bremsstrahlung photons, however, imposes substantial challenges on accurate quantification of the activity distribution. The aim of this work was to develop and evaluate an improved quantitative (90)Y bremsstrahlung SPECT reconstruction method appropriate for these imaging applications. METHODS: Accurate modeling of image degrading factors such as object attenuation and scatter and the collimator-detector response is essential to obtain quantitatively accurate images. All of the image degrading factors are energy dependent. Thus, the authors separated the modeling of the bremsstrahlung photons into multiple categories and energy ranges. To improve the accuracy, the authors used a bremsstrahlung energy spectrum previously estimated from experimental measurements and incorporated a model of the distance between (90)Y decay location and bremsstrahlung emission location into the SIMIND code used to generate the response functions and kernels used in the model. This improved Monte Carlo bremsstrahlung simulation was validated by comparison to experimentally measured projection data of a (90)Y line source. The authors validated the accuracy of the forward projection model for photons in the various categories and energy ranges using the validated Monte Carlo (MC) simulation method. The forward projection model was incorporated into an iterative ordered subsets-expectation maximization (OS-EM) reconstruction code to allow for quantitative SPECT reconstruction. The resulting code was validated using both a physical phantom experiment with spherical objects in a warm background and a realistic anatomical phantom simulation. In the physical phantom study, the authors evaluated the method in terms of quantitative accuracy of activity estimates in the spheres; in the simulation study, the authors evaluated the accuracy and precision of activity estimates from various organs and compared them to results from a previously proposed method. RESULTS: The authors demonstrated excellent agreement between the experimental measurement and Monte Carlo simulation. In the XCAT phantom simulation, the proposed method achieved much better accuracy in the modeling (error in photon counts was -1.1 %) compared to a previously proposed method (errors were more than 20 %); the quantitative accuracy of activity estimates was excellent for all organs (errors were from -1.6 % to 11.9 %) and comparable to previously published results for (131)I using the same collimator. CONCLUSIONS: The proposed (90)Y bremsstrahlung SPECT reconstruction method provided very accurate estimates of organ activities, with accuracies approaching those previously observed for (131)I. The method may be useful in verifying organ doses for targeted radionuclide therapy using (90)Y.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único/métodos , Método de Montecarlo , Fantasmas de Imagen , Fotones , Radiometría , Reproducibilidad de los Resultados , Dispersión de Radiación , Radioisótopos de Itrio
17.
BMC Vet Res ; 8: 50, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22551079

RESUMEN

BACKGROUND: Retraction, atrophy and fatty infiltration are signs subsequent to chronic rotator cuff tendon tears. They are associated with an increased pennation angle and a shortening of the muscle fibers in series. These deleterious changes of the muscular architecture are not reversible with current repair techniques and are the main factors for failed rotator cuff tendon repair. Whereas fast stretching of the retracted musculotendinous unit results in proliferation of non-contractile fibrous tissue, slow stretching may lead to muscle regeneration in terms of sarcomerogenesis. To slowly stretch the retracted musculotendinous unit in a sheep model, two here described tensioning devices have been developed and mounted on the scapular spine of the sheep using an expandable threaded rod, which has been interposed between the retracted tendon end and the original insertion site at the humeral head. Traction is transmitted in line with the musculotendinous unit by sutures knotted on the expandable threaded rod. The threaded rod of the tensioner is driven within the body through a rotating axis, which enters the body on the opposite side. The tendon end, which was previously released (16 weeks prior) from its insertion site with a bone chip, was elongated with a velocity of 1 mm/day. RESULTS: After several steps of technical improvements, the tensioner proved to be capable of actively stretching the retracted and degenerated muscle back to the original length and to withstand the external forces acting on it. CONCLUSION: This technical report describes the experimental technique for continuous elongation of the musculotendinous unit and reversion of the length of chronically shortened muscle.


Asunto(s)
Músculo Esquelético/fisiología , Ovinos , Tracción/veterinaria , Animales , Atrofia/prevención & control , Atrofia/veterinaria , Fenómenos Biomecánicos , Miembro Anterior , Músculo Esquelético/crecimiento & desarrollo , Tendones/fisiología , Tracción/instrumentación
18.
EJNMMI Phys ; 9(1): 57, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36018453

RESUMEN

BACKGROUND: In 2016, the International Commission on Radiological Protection (ICRP) published the results of Monte Carlo simulations performed using updated and anatomically realistic voxelized phantoms. The resulting specific absorbed fractions are based on more realistic human anatomy than those computed in the stylized, geometrical Cristy-Eckerman (CE) phantom. Despite this development, the ICRP-absorbed fractions have not been widely adopted for radiopharmaceutical dosimetry. To help make the transition, we have established a correspondence between source and target tissues defined in the CE phantom and those defined in the ICRP phantoms. RESULTS: The ICRP phantom has 79 source regions and 43 target regions in comparison with the 23 source and 18 target tissue regions defined in the CE phantom. The ICRP phantom provides tissue regions with greater anatomical detail. Some of this additional detail is focused on radiation protection and dosimetry of inhaled/ingested radioactivity. Some, but not all, of this detail is useful and appropriate for radiopharmaceutical therapy. We have established the correspondence between CE and ICRP phantom source and target regions and attempted to highlight the ICRP source tissues relevant to radiopharmaceutical therapy (RPT). This paper provides tables and figures highlighting the correspondences established. CONCLUSION: The results provide assistance in transitioning from CE-stylized phantoms to the anatomically accurate voxelized ICRP phantoms. It provides specific guidance for porting the total absorbed activity for regions as defined in the CE phantom to regions within the ICRP phantoms.

19.
Med Image Anal ; 82: 102615, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36156420

RESUMEN

In the last decade, convolutional neural networks (ConvNets) have been a major focus of research in medical image analysis. However, the performances of ConvNets may be limited by a lack of explicit consideration of the long-range spatial relationships in an image. Recently, Vision Transformer architectures have been proposed to address the shortcomings of ConvNets and have produced state-of-the-art performances in many medical imaging applications. Transformers may be a strong candidate for image registration because their substantially larger receptive field enables a more precise comprehension of the spatial correspondence between moving and fixed images. Here, we present TransMorph, a hybrid Transformer-ConvNet model for volumetric medical image registration. This paper also presents diffeomorphic and Bayesian variants of TransMorph: the diffeomorphic variants ensure the topology-preserving deformations, and the Bayesian variant produces a well-calibrated registration uncertainty estimate. We extensively validated the proposed models using 3D medical images from three applications: inter-patient and atlas-to-patient brain MRI registration and phantom-to-CT registration. The proposed models are evaluated in comparison to a variety of existing registration methods and Transformer architectures. Qualitative and quantitative results demonstrate that the proposed Transformer-based model leads to a substantial performance improvement over the baseline methods, confirming the effectiveness of Transformers for medical image registration.


Asunto(s)
Imagenología Tridimensional , Redes Neurales de la Computación , Humanos , Teorema de Bayes , Imagen por Resonancia Magnética , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
20.
Med Phys ; 38(6): 3193-204, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21815394

RESUMEN

PURPOSE: The radionuclide 131I has found widespread use in targeted radionuclide therapy (TRT), partly due to the fact that it emits photons that can be imaged to perform treatment planning or posttherapy dose verification as well as beta rays that are suitable for therapy. In both the treatment planning and dose verification applications, it is necessary to estimate the activity distribution in organs or tumors at several time points. In vivo estimates of the 131I activity distribution at each time point can be obtained from quantitative single-photon emission computed tomography (QSPECT) images and organ activity estimates can be obtained either from QSPECT images or quantification of planar projection data. However, in addition to the photon used for imaging, 131I decay results in emission of a number of other higher-energy photons with significant abundances. These higher-energy photons can scatter in the body, collimator, or detector and be counted in the 364 keV photopeak energy window, resulting in reduced image contrast and degraded quantitative accuracy; these photons are referred to as downscatter. The goal of this study was to develop and evaluate a model-based downscatter compensation method specifically designed for the compensation of high-energy photons emitted by 131I and detected in the imaging energy window. METHODS: In the evaluation study, we used a Monte Carlo simulation (MCS) code that had previously been validated for other radionuclides. Thus, in preparation for the evaluation study, we first validated the code for 131I imaging simulation by comparison with experimental data. Next, we assessed the accuracy of the downscatter model by comparing downscatter estimates with MCS results. Finally, we combined the downscatter model with iterative reconstruction-based compensation for attenuation (A) and scatter (S) and the full (D) collimator-detector response of the 364 keV photons to form a comprehensive compensation method. We evaluated this combined method in terms of quantitative accuracy using the realistic 3D NCAT phantom and an activity distribution obtained from patient studies. We compared the accuracy of organ activity estimates in images reconstructed with and without addition of downscatter compensation from projections with and without downscatter contamination. RESULTS: We observed that the proposed method provided substantial improvements in accuracy compared to no downscatter compensation and had accuracies comparable to reconstructions from projections without downscatter contamination. CONCLUSIONS: The results demonstrate that the proposed model-based downscatter compensation method is effective and may have a role in quantitative 131I imaging.


Asunto(s)
Modelos Teóricos , Dispersión de Radiación , Tomografía Computarizada de Emisión de Fotón Único/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Radioisótopos de Yodo , Método de Montecarlo , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA