Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Immunol ; 53(7): e2250144, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37044112

RESUMEN

The newborn's immune system is faced with the challenge of having to learn quickly to fight off infectious agents, but tolerating the colonization of the body surfaces with commensals without reacting with an excessive inflammatory response. Myeloid-derived suppressor cells (MDSC) are innate immune cells with suppressive activity on other immune cells that regulate fetal-maternal tolerance during pregnancy and control intestinal inflammation in neonates. Until now, nothing is known about the role of MDSC in microbiome establishment. One of the transcription factors regulating MDSC homeostasis is the hypoxia-inducible factor 1α (HIF-1α). We investigated the impact of HIF-1α on MDSC accumulation and microbiome establishment during the neonatal period in a mouse model with targeted deletion of HIF-1α in myeloid cells (Hif1a loxP/loxP LysMCre+). We show that in contrast to wildtype mice, where an extensive expansion of MDSC was observed, MDSC expansion in neonatal Hif1a loxP/loxP LysMCre+ mice was dramatically reduced both systemically and locally in the intestine. This was accompanied by an altered microbiome composition and intestinal T-cell homeostasis. Our results point toward a role of MDSC in inflammation regulation in the context of microbiome establishment and thus reveal a new aspect of the biological role of MDSC during the neonatal period.


Asunto(s)
Células Supresoras de Origen Mieloide , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación , Células Mieloides
2.
Curr Top Microbiol Immunol ; 422: 265-301, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30062595

RESUMEN

The human microbiota consists of bacteria, archaea, viruses, and fungi that build a highly complex network of interactions between each other and the host. While there are many examples for commensal bacterial influence on host health and immune modulation, little is known about the role of commensal fungi inside the gut community. Up until now, fungal research was concentrating on opportunistic diseases caused by fungal species, leaving the possible role of fungi as part of the microbiota largely unclear. Interestingly, fungal and bacterial abundance in the gut appear to be negatively correlated and disruption of the bacterial microbiota is a prerequisite for fungal overgrowth. The mechanisms behind bacterial colonization resistance are likely diverse, including direct antagonism as well as bacterial stimulation of host defense mechanisms. In this work, we will review the current knowledge of the development of the intestinal bacterial and fungal community, the influence of the microbiota on human health and disease, and the role of the opportunistic yeast C. albicans. We will furthermore discuss the possible benefits of commensal fungal colonization. Finally, we will summarize the recent findings on bacterial-fungal interactions.


Asunto(s)
Bacterias , Hongos/fisiología , Microbioma Gastrointestinal/fisiología , Interacciones Microbianas , Infecciones Bacterianas/microbiología , Candida albicans/patogenicidad , Candida albicans/fisiología , Hongos/patogenicidad , Humanos , Simbiosis
3.
J Immunol ; 195(11): 5421-31, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519528

RESUMEN

Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1ß processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1ß maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1ß secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1ß, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1ß cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1ß by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1ß, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications.


Asunto(s)
Caspasa 8/inmunología , Células Dendríticas/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Animales , Células de la Médula Ósea , Proteínas Portadoras , Caspasa 1/genética , Caspasa 1/inmunología , Inhibidores de Caspasas/farmacología , Caspasas/genética , Caspasas Iniciadoras , Células Cultivadas , Colitis/inducido químicamente , Sulfato de Dextran , Histona Desacetilasas/inmunología , Inflamasomas/inmunología , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR
4.
Dtsch Arztebl Int ; 119(8): 117-123, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35101171

RESUMEN

BACKGROUND: Contact with a pathogen is followed by variable courses of infectious disease, which are only partly explicable by classical risk factors. The susceptibility to infection is variable, as is the course of disease after infection. In this review, we discuss the extent to which this variation is due to genetic factors of the affected individual (the host). METHODS: Selective review of the literature on host genetics in infectious disease, with special attention to the pathogens SARSCoV- 2, influenza viruses, Mycobacterium tuberculosis, and human immunodeficiency virus (HIV). RESULTS: Genetic variants of the host contribute to the pathogenesis of infectious diseases. For example, in HIV infection, a relatively common variant leading to a loss of function of the HIV co-receptor CCR5 affects the course of the disease, as do variants in genes of the major histocompatibility complex (MHC) region. Rare monogenic variants of the interferon immune response system contribute to severe disease courses in COVID-19 and influenza (type I interferon in these two cases) and in tuberculosis (type II interferon). An estimated 1.8% of life-threatening courses of COVID-19 in men under age 60 are caused by a deficiency of toll-like receptor 7. The scientific understanding of host genetic factors has already been beneficial to the development of effective drugs. In a small number of cases, genetic information has also been used for individual therapeutic decision-making and for the identification of persons at elevated risk. CONCLUSION: A comprehensive understanding of host genetics can improve the care of patients with infectious diseases. Until the present, the clinical utility of host genetics has been limited to rare cases; in the future, polygenic risk scores summarizing the relevant genetic variants in each patient will enable a wider benefit. To make this possible, multicenter studies are needed that will systematically integrate clinical and genetic data.


Asunto(s)
COVID-19 , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Infecciones por VIH/genética , Humanos , Masculino , Persona de Mediana Edad , Tuberculosis/genética
5.
Front Microbiol ; 10: 2999, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998276

RESUMEN

The Oligo-Mouse-Microbiota (OMM12) is a recently developed synthetic bacterial community for functional microbiome research in mouse models (Brugiroux et al., 2016). To date, the OMM12 model has been established in several germ-free mouse facilities world-wide and is employed to address a growing variety of research questions related to infection biology, mucosal immunology, microbial ecology and host-microbiome metabolic cross-talk. The OMM12 consists of 12 sequenced and publically available strains isolated from mice, representing five bacterial phyla that are naturally abundant in the murine gastrointestinal tract (Lagkouvardos et al., 2016). Under germ-free conditions, the OMM12 colonizes mice stably over multiple generations. Here, we investigated whether stably colonized OMM12 mouse lines could be reproducibly established in different animal facilities. Germ-free C57Bl/6J mice were inoculated with a frozen mixture of the OMM12 strains. Within 2 weeks after application, the OMM12 community reached the same stable composition in all facilities, as determined by fecal microbiome analysis. We show that a second application of the OMM12 strains after 72 h leads to a more stable community composition than a single application. The availability of such protocols for reliable de novo generation of gnotobiotic rodents will certainly contribute to increasing experimental reproducibility in biomedical research.

6.
Histochem Cell Biol ; 129(6): 795-804, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18320204

RESUMEN

Together with animal experiments, organotypical cell cultures are important models for analyzing cellular interactions of the mucosal epithelium and pathogenic mechanisms in the gastrointestinal tract. Here, we introduce a three-dimensional culture model from the adult mouse colon for cell biological investigations in an in vivo-like environment. These explant cultures were cultured for up to 2 weeks and maintained typical characteristics of the intestinal mucosa, including a high-prismatic epithelium with specific epithelial cell-to-cell connections, a basal lamina and various connective tissue cell types, as analyzed with immunohistological and electron microscopic methods. The function of the epithelium was tested by treating the cultures with dexamethasone, which resulted in a strong upregulation of the serum- and glucocorticoid-inducible kinase 1 similar to that found in vivo. The culture system was investigated in infection experiments with the fungal pathogen Candida albicans. Wildtype but not Deltacph1/Deltaefg1-knockout Candida adhered to, penetrated and infiltrated the epithelial barrier. The results demonstrate the potential usefulness of this intestinal in vitro model for studying epithelial cell-cell interactions, cellular signaling and microbiological infections in a three-dimensional cell arrangement.


Asunto(s)
Colon/ultraestructura , Mucosa Intestinal/ultraestructura , Animales , Candida albicans/genética , Candida albicans/metabolismo , Candidiasis/metabolismo , Candidiasis/microbiología , Técnicas de Cultivo de Célula , Colon/efectos de los fármacos , Colon/microbiología , Dexametasona/farmacología , Epitelio/efectos de los fármacos , Epitelio/microbiología , Epitelio/ultraestructura , Proteínas Inmediatas-Precoces/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Técnicas de Cultivo de Tejidos
7.
PLoS One ; 3(6): e2376, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18545662

RESUMEN

BACKGROUND: IL-2 deficient (IL-2(-/-)) mice mono-colonized with E. coli mpk develop colitis whereas IL-2(-/-)-mice mono-colonized with B. vulgatus mpk do not and are even protected from E. coli mpk induced colitis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated if mono-colonization with E. coli mpk or B. vulgatus mpk differentially modulates distribution, activation and maturation of intestinal lamina propria (LP) dendritic cells (DC). LP DC in mice mono-colonized with protective B. vulgatus mpk or co-colonized with E. coli mpk/B. vulgatus mpk featured a semi-mature LP DC phenotype (CD40(lo)CD80(lo)MHC-II(hi)) whereas mono-colonization with colitogenic E. coli mpk induced LP DC activation and maturation prior to onset of colitis. Accordingly, chemokine receptor (CCR) 7 surface expression was more strikingly enhanced in mesenteric lymph node DC from E. coli mpk than B. vulgatus mpk mono- or co-colonized mice. Mature but not semi-mature LP DC promoted Th1 polarization. As B. vulgatus mpk promotes differentiation of semi-mature DC presumably by IL-6, mRNA and protein expression of IL-6 was investigated in LP DC. The data demonstrated that IL-6 mRNA and protein was increased in LP DC of B. vulgatus mpk as compared to E. coli mpk mono-colonized IL-2(-/-)-mice. The B. vulgatus mpk mediated suppression of CCR7 expression and DC migration was abolished in IL-6(-/-)-DC in vitro. CONCLUSIONS/SIGNIFICANCE: From this data we conclude that the B. vulgatus triggered IL-6 secretion by LP DC in absence of proinflammatory cytokines such as IL-12 or TNF-alpha induces a semi-mature LP DC phenotype, which might prevent T-cell activation and thereby the induction of colitis in IL-2(-/-)-mice. The data provide new evidence that IL-6 might act as an immune regulatory cytokine in the mucosa by targeting intestinal DC.


Asunto(s)
Bacillus/aislamiento & purificación , Células Dendríticas/citología , Interleucina-2/fisiología , Intestinos/microbiología , Linfocitos T/citología , Animales , Bacillus/fisiología , Células Dendríticas/metabolismo , Interleucina-2/genética , Interleucina-6/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Necrosis Tumoral alfa/metabolismo
8.
Infect Immun ; 75(7): 3490-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17485456

RESUMEN

An increasing body of evidence suggests that probiotic bacteria are effective in the treatment of enteric infections, although the molecular basis of this activity remains elusive. To identify putative probiotics, we tested commensal bacteria in terms of their toxicity, invasiveness, inhibition of Yersinia-induced inflammation in vitro and in vivo, and modulation of dextran sodium sulfate (DSS)-induced colitis in mice. The commensal bacteria Escherichia coli, Bifidobacterium adolescentis, Bacteroides vulgatus, Bacteroides distasonis, and Streptococcus salivarius were screened for adhesion to, invasion of, and toxicity for host epithelial cells (EC), and the strains were tested for their ability to inhibit Y. enterocolitica-induced NF-kappaB activation. Additionally, B. adolescentis was administered to mice orally infected with Y. enterocolitica and to mice with mucosae impaired by DSS treatment. None of the commensal bacteria tested was toxic for or invaded the EC. B. adolescentis, B. distasonis, B. vulgatus, and S. salivarius inhibited the Y. enterocolitica-induced NF-kappaB activation and interleukin-8 production in EC. In line with these findings, B. adolescentis-fed mice had significantly lower results for mean pathogen burden in the visceral organs, intestinal tumor necrosis factor alpha mRNA expression, and loss of body weight upon oral infection with Y. enterocolitica. In addition, the administration of B. adolescentis decelerated inflammation upon DSS treatment in mice. We suggest that our approach might help to identify new probiotics to be used for the treatment of inflammatory and infectious gastrointestinal disorders.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Sulfato de Dextran/farmacología , Inflamación/terapia , Probióticos/uso terapéutico , Yersinia enterocolitica/patogenicidad , Animales , Adhesión Bacteriana , Bacteroides/fisiología , Bifidobacterium/fisiología , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Células Epiteliales/microbiología , Escherichia coli/fisiología , Femenino , Células HT29 , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Streptococcus/fisiología , Yersiniosis/inmunología , Yersiniosis/microbiología
9.
PLoS One ; 2(12): e1364, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18159247

RESUMEN

BACKGROUND: During acute infection and inflammation, dramatic shifts in tissue metabolism are typical, thereby resulting in profound tissue hypoxia. Therefore, we pursued the hypothesis, that tissue hypoxia may influence innate immune responses by transcriptional modulation of Toll-like receptor (TLRs) expression and function. METHODOLOGY/PRINCIPAL FINDINGS: We gained first insight from transcriptional profiling of murine dendritic cells exposed to hypoxia (2% oxygen for 24 h). While transcript levels of other TLRs remained unchanged, we found a robust induction of TLR2 (2.36+/-0.7-fold; P<0.05) and TLR6 (3.46+/-1.56-fold; P<0.05). Additional studies in different cells types and cell-lines including human dendritic cells, monocytic cells (MM6), endothelia (HMEC-1) or intestinal epithelia (Caco-2) confirmed TLR2 and TLR6 induction of transcript, protein and function during hypoxia. Furthermore, analysis of the putative TLR2 and TLR6 promoters revealed previously unrecognized binding sites for HIF-1, which were shown by chromatin immunoprecipitation to bind the pivotal hypoxia-regulating transcription factor HIF-1alpha. Studies using loss and gain of function of HIF-1 confirmed a critical role of HIF-1alpha in coordinating TLR2 and TLR6 induction. Moreover, studies of murine hypoxia (8% oxygen over 6 h) showed TLR2 and TLR 6 induction in mucosal organs in vivo. In contrast, hypoxia induction of TLR2 and TLR6 was abolished in conditional HIF-1alpha mutant mice. CONCLUSIONS/SIGNIFICANCE: Taking together, these studies reveal coordinated induction of TLR2 and TLR6 during hypoxia and suggest tissue hypoxia in transcriptional adaptation of innate immune responses during acute infection or inflammation.


Asunto(s)
Hipoxia/metabolismo , Proteínas de Neoplasias/fisiología , Receptor Toll-Like 2/biosíntesis , Receptor Toll-Like 6/biosíntesis , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Proteínas Mitocondriales , ARN Mensajero/genética , Transducción de Señal , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/genética , Receptor Toll-Like 6/metabolismo
10.
Eur J Immunol ; 36(6): 1537-47, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16708404

RESUMEN

We investigated whether commensal bacteria modulate activation and maturation of bone marrow-derived DC and their ability to prime CD4(+) T cells. We used Escherichia coli mpk, which induces colitis in gnotobiotic IL-2-deficient (IL-2(-/-)) mice, and Bacteroides vulgatus mpk, which prevents E. coli-induced colitis. Stimulation of DC with E. coli induced TNF-alpha, IL-12 and IL-6 secretion and expression of activation markers. Moreover, stimulation of DC with E. coli increased T cell activation and led to Th1 polarization. Stimulation with B. vulgatus led only to secretion of IL-6, and DC were driven into a semi-mature state with low expression of activation markers and did not promote Th1 responses. B. vulgatus-induced semi-mature DC were non-responsive to stimulation by E. coli in terms of maturation, T cell priming and TNF-alpha but not IL-6 production. The non-responsiveness of B. vulgatus-stimulated DC was abrogated by addition of anti-IL-6 mAb or mimicked with rIL-6. These data suggest that B. vulgatus-induced IL-6 drives DC into a semi-mature state in which they are non-responsive to proinflammatory activation by E. coli. This in vitro mechanism might contribute to the prevention of E. coli-triggered colitis development by B. vulgatus in vivo; high IL-6 mRNA expression was consistently found in B. vulgatus-colonized or B. vulgatus/E. coli co-colonized IL-2(-/-) mice and was associated with absence of colitis.


Asunto(s)
Infecciones por Bacteroides/inmunología , Bacteroides/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Interleucina-6/inmunología , Animales , Infecciones por Bacteroides/microbiología , Linfocitos T CD4-Positivos/microbiología , Colitis/inmunología , Colitis/microbiología , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Infecciones por Escherichia coli/microbiología , Femenino , Citometría de Flujo , Inmunofenotipificación , Interleucina-10/inmunología , Interleucina-12/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Organismos Libres de Patógenos Específicos , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA