Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 39(12): 2238-2250, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30655357

RESUMEN

Gastrin-releasing peptide (GRP) is a spinal itch transmitter expressed by a small population of dorsal horn interneurons (GRP neurons). The contribution of these neurons to spinal itch relay is still only incompletely understood, and their potential contribution to pain-related behaviors remains controversial. Here, we have addressed this question in a series of experiments performed in GRP::cre and GRP::eGFP transgenic male mice. We combined behavioral tests with neuronal circuit tracing, morphology, chemogenetics, optogenetics, and electrophysiology to obtain a more comprehensive picture. We found that GRP neurons form a rather homogeneous population of central cell-like excitatory neurons located in lamina II of the superficial dorsal horn. Multicolor high-resolution confocal microscopy and optogenetic experiments demonstrated that GRP neurons receive direct input from MrgprA3-positive pruritoceptors. Anterograde HSV-based neuronal tracing initiated from GRP neurons revealed ascending polysynaptic projections to distinct areas and nuclei in the brainstem, midbrain, thalamus, and the somatosensory cortex. Spinally restricted ablation of GRP neurons reduced itch-related behaviors to different pruritogens, whereas their chemogenetic excitation elicited itch-like behaviors and facilitated responses to several pruritogens. By contrast, responses to painful stimuli remained unaltered. These data confirm a critical role of dorsal horn GRP neurons in spinal itch transmission but do not support a role in pain.SIGNIFICANCE STATEMENT Dorsal horn gastrin-releasing peptide neurons serve a well-established function in the spinal transmission of pruritic (itch) signals. A potential role in the transmission of nociceptive (pain) signals has remained controversial. Our results provide further support for a critical role of dorsal horn gastrin-releasing peptide neurons in itch circuits, but we failed to find evidence supporting a role in pain.


Asunto(s)
Péptido Liberador de Gastrina/fisiología , Nocicepción/fisiología , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Prurito/fisiopatología , Animales , Modelos Animales de Enfermedad , Péptido Liberador de Gastrina/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Interneuronas/fisiología , Masculino , Ratones Transgénicos , Dolor/complicaciones , Dolor/patología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Prurito/complicaciones , Prurito/patología
2.
J Neurophysiol ; 123(4): 1496-1503, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159408

RESUMEN

As the main input nucleus of the basal ganglia, the striatum plays a central role in planning, control, and execution of movement and motor skill learning. More than 90% of striatal neurons, so-called medium spiny neurons (MSN), are GABAergic projection neurons, innervating primarily the substantia nigra pars reticulata or the globus pallidus internus. The remaining neurons are GABAergic and cholinergic interneurons, synchronizing and controlling striatal output by reciprocal connections with MSN. Besides prominent local cholinergic influence, striatal function is globally regulated by dopamine (DA) from the nigrostriatal pathway. Little is known about whether DA depletion, as occurs in Parkinson's disease, affects the activity of striatal interneurons. Here we focused on neuropeptide Y (NPY)-expressing interneurons, which are among the major subgroups of GABAergic interneurons in the striatum. We investigated the effects of striatal DA depletion on GABAergic transmission in NPY interneurons by electrophysiologically recording GABAergic spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs) in identified NPY interneurons in slices from 6-hydroxydopamine (6-OHDA)- and vehicle-injected transgenic NPY-humanized Renilla green fluorescent protein (hrGFP) mice with the whole cell patch-clamp technique. We report a significant increase in sIPSC and mIPSC frequency as well as the occurrence of giant synaptic and burst sIPSCs in the 6-OHDA group, suggesting changes in GABAergic circuit activity and synaptic transmission. IPSC kinetics remained unchanged, pointing to mainly presynaptic changes in GABAergic transmission. These results show that chronic DA depletion following 6-OHDA injection causes activity-dependent and -independent increase of synaptic GABAergic inhibition onto striatal NPY interneurons, confirming their involvement in the functional impairments of the DA-depleted striatum.NEW & NOTEWORTHY Neuropeptide Y (NPY) interneurons regulate the function of striatal projection neurons and are upregulated upon dopamine depletion in the striatum. Here we investigated how dopamine depletion affects NPY circuits and show electrophysiologically that it leads to the occurrence of giant synaptic and burst GABAergic spontaneous inhibitory postsynaptic currents (IPSCs) and to an activity-independent increase in GABAergic miniature IPSC frequency in NPY neurons. We suggest that degeneration of dopaminergic terminals in the striatum causes functional changes in striatal GABAergic function.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/metabolismo , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/fisiología , Neuropéptido Y/metabolismo , Transmisión Sináptica/fisiología , Adrenérgicos/farmacología , Animales , Cuerpo Estriado/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidopamina/farmacología , Técnicas de Placa-Clamp
3.
Eur J Neurosci ; 52(5): 3353-3374, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599671

RESUMEN

Lack of dopamine (DA) in the striatum and the consequential dysregulation of thalamocortical circuits are major causes of motor impairments in Parkinson's disease. The striatum receives multiple cortical and subcortical afferents. Its role in movement control and motor skills learning is regulated by DA from the nigrostriatal pathway. In Parkinson's disease, DA loss affects striatal network activity and induces a functional imbalance of its output pathways, impairing thalamocortical function. Striatal projection neurons are GABAergic and form two functionally antagonistic pathways: the direct pathway, originating from DA receptor type 1-expressing medium spiny neurons (D1 R-MSN), and the indirect pathway, from D2 R-MSN. Here, we investigated whether DA depletion in mouse striatum also affects GABAergic function. We recorded GABAergic miniature IPSCs (mIPSC) and tonic inhibition from D1 R- and D2 R-MSN and used immunohistochemical labeling to study GABAA R function and subcellular distribution in DA-depleted and control mice. We observed slower decay kinetics and increased tonic inhibition in D1 R-MSN, while D2 R-MSN had increased mIPSC frequency after DA depletion. Perisomatic synapses containing the GABAA R subunits α1 or α2 were not affected, but there was a strong decrease in non-synaptic GABAA Rs containing these subunits, suggesting altered receptor trafficking. To broaden these findings, we also investigated GABAA Rs in GABAergic and cholinergic interneurons and found cell type-specific alterations in receptor distribution, likely reflecting changes in connectivity. Our results reveal that chronic DA depletion alters striatal GABAergic transmission, thereby affecting cellular and circuit activity. These alterations either result from pathological changes or represent a compensatory mechanism to counteract imbalance of output pathways.


Asunto(s)
Cuerpo Estriado , Dopamina , Animales , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
4.
PLoS Genet ; 13(10): e1007073, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29069083

RESUMEN

In developing brain neuronal migration, dendrite outgrowth and dendritic spine outgrowth are controlled by Cdc42, a small GTPase of the Rho family, and its activators. Cdc42 function in promoting actin polymerization is crucial for glutamatergic synapse regulation. Here, we focus on GABAergic synapse-specific activator of Cdc42, collybistin (CB) and examine functional differences between its splice isoforms CB1 and CB2. We report that CB1 and CB2 differentially regulate GABAergic synapse formation in vitro along proximal-distal axis and adult-born neuron maturation in vivo. The functional specialization between CB1 and CB2 isoforms arises from their differential protein half-life, in turn regulated by ubiquitin conjugation of the unique CB1 C-terminus. We report that CB1 and CB2 negatively regulate Cdc42; however, Cdc42 activation is dependent on CB interaction with gephyrin. During hippocampal adult neurogenesis CB1 regulates neuronal migration, while CB2 is essential for dendrite outgrowth. Finally, using mice lacking Gabra2 subunit, we show that CB1 function is downstream of GABAARs, and we can rescue adult neurogenesis deficit observed in Gabra2 KO. Overall, our results uncover previously unexpected role for CB isoforms downstream of α2-containing GABAARs during neuron maturation in a Cdc42 dependent mechanism.


Asunto(s)
Neuronas/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/genética , Sinapsis/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Movimiento Celular , Regulación de la Expresión Génica , Células HEK293 , Hipocampo/citología , Hipocampo/fisiología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis , Neuronas/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA-A/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
5.
Nat Rev Neurosci ; 15(3): 141-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24552784

RESUMEN

The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/fisiología , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Sinapsis/fisiología , Animales , Proteínas Portadoras/genética , Hipocampo/metabolismo , Proteínas de la Membrana/genética , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sinapsis/metabolismo
6.
J Neurochem ; 147(4): 477-494, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30142695

RESUMEN

In dissociated neuronal cultures the absence of spatial and temporal cues causes the emergence of mismatched synapses, where post-synaptic proteins of GABAergic synapses are in part apposed to glutamatergic pre-synaptic terminals and vice versa. This mismatch offers an opportunity to study the mechanisms that regulate correct apposition of pre- and post-synaptic elements. We report here that the IQ motif and Sec7 domain-containing protein 3 (IQSEC3; BRAG3; synArfGEF) specifically regulates the mislocalization of GABAergic post-synaptic density (PSD) proteins. Over-expression of IQSEC3 constructs harboring mutations that ablate Sec7 domain or IQ motif function revealed that IQSEC3 catalytic activity is involved in the control of apposition between the GABAergic PSD and glutamatergic terminals. Neurons co-expressing eGFP-gephyrin with IQSEC3 Sec7 mutant displayed a drastically increased fraction of mismatched eGFP-gephyrin clusters compared to other IQSEC3 constructs. Along with eGFP-gephyrin, endogenous GABAA receptor cluster mismatching was increased by IQSEC3 Sec7 mutant over-expression. Conversely, GFP-PSD-95 clusters were unaffected by over-expression of any IQSEC3 construct. The GABAergic PSD mismatch phenotype was recapitulated by Arf6 dominant-negative mutant over-expression, suggesting that Arf6 activation by IQSEC3 is an essential step in this pathway. In addition, we provide biochemical evidence to confirm gephyrin/IQSEC3 interaction near the IQSEC3 IQ motif, which in turn binds calmodulin at low Ca2+ concentrations. Taken together, our findings identify a post-synaptic protein which specifically regulates correct apposition of the GABAergic PSD to pre-synaptic terminals.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Catálisis , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Hipocampo/citología , Procesamiento de Imagen Asistido por Computador , Densidad Postsináptica , Embarazo , Terminales Presinápticos/metabolismo , Cultivo Primario de Células , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/fisiología
7.
Eur J Neurosci ; 47(12): 1534-1562, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29862588

RESUMEN

Aberrant epileptic activity is detectable at early disease stages in Alzheimer's disease (AD) patients and in AD mouse models. Here, we investigated in young ArcticAß mice whether AD-like pathology renders neuronal networks more susceptible to the development of acquired epilepsy induced by unilateral intrahippocampal injection of kainic acid (IHK). In this temporal lobe epilepsy model, IHK induces a status epilepticus followed after two weeks by spontaneous recurrent seizures (SRS). ArcticAß mice exhibited more severe status epilepticus and early onset of SRS. This hyperexcitable phenotype was characterized in CA1 neurons by decreased synaptic strength, increased kainic acid-induced LTP and reduced frequency of spontaneous inhibitory currents. However, no difference in neurodegeneration, neuroinflammation, axonal reorganization or adult neurogenesis was observed in ArcticAß mice compared to wild-type littermates following IHK-induced epileptogenesis. Neuropeptide Y (NPY) expression was reduced at baseline and its IHK-induced elevation in mossy fibres and granule cells was attenuated. However, although this alteration might underlie premature seizure onset, neutralization of soluble Aß species by intracerebroventricular Aß-specific antibody application mitigated the hyperexcitable phenotype of ArcticAß mice and prevented early SRS onset. Therefore, the development of seizures at early stages of AD is mediated primarily by Aß species causing widespread changes in synaptic function.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Epilepsia del Lóbulo Temporal , Hipocampo , Plasticidad Neuronal , Convulsiones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatología
8.
Proc Natl Acad Sci U S A ; 112(1): E65-72, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535349

RESUMEN

Maintaining a proper balance between excitation and inhibition is essential for the functioning of neuronal networks. However, little is known about the mechanisms through which excitatory activity can affect inhibitory synapse plasticity. Here we used tagged gephyrin, one of the main scaffolding proteins of the postsynaptic density at GABAergic synapses, to monitor the activity-dependent adaptation of perisomatic inhibitory synapses over prolonged periods of time in hippocampal slice cultures. We find that learning-related activity patterns known to induce N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation and transient optogenetic activation of single neurons induce within hours a robust increase in the formation and size of gephyrin-tagged clusters at inhibitory synapses identified by correlated confocal electron microscopy. This inhibitory morphological plasticity was associated with an increase in spontaneous inhibitory activity but did not require activation of GABAA receptors. Importantly, this activity-dependent inhibitory plasticity was prevented by pharmacological blockade of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), it was associated with an increased phosphorylation of gephyrin on a site targeted by CaMKII, and could be prevented or mimicked by gephyrin phospho-mutants for this site. These results reveal a homeostatic mechanism through which activity regulates the dynamics and function of perisomatic inhibitory synapses, and they identify a CaMKII-dependent phosphorylation site on gephyrin as critically important for this process.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Inhibición Neural , Sinapsis/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Portadoras/ultraestructura , Hipocampo/metabolismo , Proteínas de la Membrana/ultraestructura , Ratones , Inhibición Neural/efectos de los fármacos , Optogenética , Técnicas de Cultivo de Órganos , Fosforilación/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Piridazinas/farmacología , Ratas , Receptores de GABA-A/metabolismo , Sinapsis/efectos de los fármacos
9.
J Neurosci ; 36(40): 10296-10313, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27707967

RESUMEN

Distinct types of GABAergic interneurons target different subcellular domains of pyramidal cells, thereby shaping pyramidal cell activity patterns. Whether the presynaptic heterogeneity of GABAergic innervation is mirrored by specific postsynaptic factors is largely unexplored. Here we show that dystroglycan, a protein responsible for the majority of congenital muscular dystrophies when dysfunctional, has a function at postsynaptic sites restricted to a subset of GABAergic interneurons. Conditional deletion of Dag1, encoding dystroglycan, in pyramidal cells caused loss of CCK-positive basket cell terminals in hippocampus and neocortex. PV-positive basket cell terminals were unaffected in mutant mice, demonstrating interneuron subtype-specific function of dystroglycan. Loss of dystroglycan in pyramidal cells had little influence on clustering of other GABAergic postsynaptic proteins and of glutamatergic synaptic proteins. CCK-positive terminals were not established at P21 in the absence of dystroglycan and were markedly reduced when dystroglycan was ablated in adult mice, suggesting a role for dystroglycan in both formation and maintenance of CCK-positive terminals. The necessity of neuronal dystroglycan for functional innervation by CCK-positive basket cell axon terminals was confirmed by reduced frequency of inhibitory events in pyramidal cells of dystroglycan-deficient mice and further corroborated by the inefficiency of carbachol to increase IPSC frequency in these cells. Finally, neurexin binding seems dispensable for dystroglycan function because knock-in mice expressing binding-deficient T190M dystroglycan displayed normal CCK-positive terminals. Together, we describe a novel function of dystroglycan in interneuron subtype-specific trans-synaptic signaling, revealing correlation of presynaptic and postsynaptic molecular diversity. SIGNIFICANCE STATEMENT: Dystroglycan, an extracellular and transmembrane protein of the dystrophin-glycoprotein complex, is at the center of molecular studies of muscular dystrophies. Although its synaptic distribution in cortical brain regions is long established, function of dystroglycan in the synapse remained obscure. Using mice that selectively lack neuronal dystroglycan, we provide evidence that a subset of GABAergic interneurons requires dystroglycan for formation and maintenance of axonal terminals on pyramidal cells. As such, dystroglycan is the first postsynaptic GABAergic protein for which an interneuron terminal-specific function could be shown. Our findings also offer a new perspective on the mechanisms that lead to intellectual disability in muscular dystrophies without associated brain malformations.


Asunto(s)
Colecistoquinina/metabolismo , Distroglicanos/fisiología , Terminales Presinápticos/fisiología , Células Piramidales/fisiología , Animales , Proteínas de Unión al Calcio , Carbacol/farmacología , Distroglicanos/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas de Sustitución del Gen , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Muscarínicos/farmacología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sistema Nervioso Parasimpático/efectos de los fármacos , Sistema Nervioso Parasimpático/fisiología , Ácido gamma-Aminobutírico/fisiología
10.
Eur J Neurosci ; 44(5): 2258-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364953

RESUMEN

Alterations of neuronal activity due to changes in GABAA receptors (GABAA R) mediating tonic inhibition influence different hippocampal functions. Gabra5-null mice and α5 subunit((H105R)) knock-in mice exhibit signs of hippocampal dysfunction, but are capable of improved performance in several learning and memory tasks. Accordingly, alleviating abnormal GABAergic tonic inhibition in the hippocampal formation by selective α5-GABAA R modulators represents a possible therapeutic approach for several intellectual deficit disorders. Adult neurogenesis in the dentate gyrus is an important facet of hippocampal plasticity; it is regulated by tonic GABAergic transmission, as shown by deficits in proliferation, migration and dendritic development of adult-born neurons in Gabra4-null mice. Here, we investigated the contribution of α5-GABAA Rs to granule cell development, using retroviral vectors expressing eGFP for labeling precursor cells in the subgranular zone. Global α5-GABAA R knockout (α5-KO) mice showed no alterations in migration and morphological development of eGFP-positive granule cells. However, upregulation of α1 subunit-immunoreactivity was observed in the hippocampal formation and cerebral cortex. In contrast, partial gene inactivation in α5-heterozygous (α5-het) mice, as well as single-cell deletion of Gabra5 in newborn granule cells from α5-floxed mice, caused severe alterations of migration and dendrite development. In α5-het mice, retrovirally mediated overexpression of Cdk5 resulted in normal migration and dendritic branching, suggesting that Cdk5 cooperates with α5-GABAA Rs to regulate neuronal development. These results show that minor imbalance of α5-GABAA R-mediated transmission may have major consequences for neuronal plasticity; and call for caution upon chronic therapeutic use of negative allosteric modulators acting at these receptors.


Asunto(s)
Giro Dentado/citología , Neurogénesis , Neuronas/citología , Receptores de GABA-A/metabolismo , Animales , Movimiento Celular , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Espinas Dendríticas/metabolismo , Giro Dentado/embriología , Giro Dentado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores de GABA-A/genética
11.
Nature ; 463(7282): 769-74, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148031

RESUMEN

Benzodiazepines are widely used in clinics and for recreational purposes, but will lead to addiction in vulnerable individuals. Addictive drugs increase the levels of dopamine and also trigger long-lasting synaptic adaptations in the mesolimbic reward system that ultimately may induce the pathological behaviour. The neural basis for the addictive nature of benzodiazepines, however, remains elusive. Here we show that benzodiazepines increase firing of dopamine neurons of the ventral tegmental area through the positive modulation of GABA(A) (gamma-aminobutyric acid type A) receptors in nearby interneurons. Such disinhibition, which relies on alpha1-containing GABA(A) receptors expressed in these cells, triggers drug-evoked synaptic plasticity in excitatory afferents onto dopamine neurons and underlies drug reinforcement. Taken together, our data provide evidence that benzodiazepines share defining pharmacological features of addictive drugs through cell-type-specific expression of alpha1-containing GABA(A) receptors in the ventral tegmental area. The data also indicate that subunit-selective benzodiazepines sparing alpha1 may be devoid of addiction liability.


Asunto(s)
Conducta Adictiva/inducido químicamente , Conducta Adictiva/fisiopatología , Benzodiazepinas/efectos adversos , Benzodiazepinas/farmacología , Neuronas/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Administración Oral , Animales , Conducta Adictiva/patología , Benzodiazepinas/administración & dosificación , Dopamina/metabolismo , Conductividad Eléctrica , Ácido Glutámico/metabolismo , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Midazolam/administración & dosificación , Midazolam/efectos adversos , Midazolam/farmacología , Modelos Biológicos , Morfina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos , Receptores AMPA/metabolismo , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Especificidad por Sustrato , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
Eur J Neurosci ; 42(8): 2595-612, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26296489

RESUMEN

The mammalian target of rapamycin (mTOR) is a key regulator of cellular growth which associates with other proteins to form two multi-protein complexes called mTORC1 and mTORC2. Dysregulation of mTORC1 signalling in brain is implicated in neuropathological conditions such as autism spectrum or neurodegenerative disorders. Accordingly, allosteric mTOR inhibitors are currently in clinical trials for the treatment of such disorders. Here, we ablated either mTORC1 or mTORC2 conditionally in Purkinje cells of the mouse cerebellum to dissect their role in the development, function and survival of these neurons. We find that the two mouse models largely differ from each other by phenotype and cellular responses. Inactivation of mTORC2, but not of mTORC1, led to motor coordination deficits at an early age. This phenotype correlated with developmental deficits in climbing fibre elimination and impaired dendritic self-avoidance in mTORC2-deficient Purkinje cells. In contrast, inactivation of mTORC1, but not of mTORC2, affected social interest of the mice and caused a progressive loss of Purkinje cells due to apoptosis. This cell loss was paralleled by age-dependent motor deficits. Comparison of mTORC1-deficient Purkinje cells with those deficient for the mTORC1 inhibitor TSC1 revealed a striking overlap in Purkinje cell degeneration and death, which included neurofilamentopathy and reactive gliosis. Altogether, our study reveals distinct roles of mTORC1 and mTORC2 in Purkinje cells for mouse behaviour and the survival of neurons. Our study also highlights a convergence between the phenotypes of Purkinje cells lacking mTORC1 activity and those expressing constitutively active mTORC1 due to TSC1 deficiency.


Asunto(s)
Complejos Multiproteicos/metabolismo , Células de Purkinje/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/fisiología , Ataxia/metabolismo , Ataxia/patología , Supervivencia Celular/fisiología , Gliosis/metabolismo , Gliosis/patología , Inmunohistoquímica , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Complejos Multiproteicos/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal/fisiología , Células de Purkinje/patología , Sinapsis/patología , Sinapsis/fisiología , Serina-Treonina Quinasas TOR/genética , Técnicas de Cultivo de Tejidos
13.
J Biol Chem ; 288(14): 9634-9647, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23408424

RESUMEN

Molecular mechanisms of plasticity at GABAergic synapses are currently poorly understood. To identify signaling cascades that converge onto GABAergic postsynaptic density proteins, we performed MS analysis using gephyrin isolated from rat brain and identified multiple novel phosphorylation and acetylation residues on gephyrin. Here, we report the characterization of one of these phosphoresidues, Ser-268, which when dephosphorylated leads to the formation of larger postsynaptic scaffolds. Using a combination of mutagenesis, pharmacological treatment, and biochemical assays, we identify ERK as the kinase phosphorylating Ser-268 and describe a functional interaction between residues Ser-268 and Ser-270. We further demonstrate that alterations in gephyrin clustering via ERK modulation are reflected by amplitude and frequency changes in miniature GABAergic postsynaptic currents. We unravel novel mechanisms for activity- and ERK-dependent calpain action on gephyrin, which are likely relevant in the context of cellular signaling affecting GABAergic transmission and homeostatic synaptic plasticity in pathology.


Asunto(s)
Calpaína/metabolismo , Proteínas Portadoras/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Animales , Encéfalo/metabolismo , Electrofisiología/métodos , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Hipocampo/metabolismo , Humanos , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Plásmidos/metabolismo , Ratas , Sinapsis/metabolismo
14.
Eur J Neurosci ; 39(11): 1845-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24628861

RESUMEN

GABAA receptors (GABAA Rs) are ligand-gated Cl(-) channels that mediate most of the fast inhibitory neurotransmission in the central nervous system (CNS). Multiple GABAA R subtypes are assembled from a family of 19 subunit genes, raising the question of the significance of this heterogeneity. In this review, we discuss the evidence that GABAA R subtypes represent distinct receptor populations with a specific spatio-temporal expression pattern in the developing and adult CNS, being endowed with unique functional and pharmacological properties, as well as being differentially regulated at the transcriptional, post-transcriptional and translational levels. GABAA R subtypes are targeted to specific subcellular domains to mediate either synaptic or extrasynaptic transmission, and their action is dynamically regulated by a vast array of molecular mechanisms to adjust the strength of inhibition to the changing needs of neuronal networks. These adaptations involve not only changing the gating or kinetic properties of GABAA Rs, but also modifying the postsynaptic scaffold organised by gephyrin to anchor specific receptor subtypes at postsynaptic sites. The significance of GABAA R heterogeneity is particularly evident during CNS development and adult neurogenesis, with different receptor subtypes fulfilling distinct steps of neuronal differentiation and maturation. Finally, analysis of the specific roles of GABAA R subtypes reveals their involvement in the pathophysiology of major CNS disorders, and opens novel perspectives for therapeutic intervention. In conclusion, GABAA R subtypes represent the substrate of a multifaceted inhibitory neurotransmission system that is dynamically regulated and performs multiple operations, contributing globally to the proper development, function and plasticity of the CNS.


Asunto(s)
Sistema Nervioso Central/metabolismo , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores , Plasticidad Neuronal , Receptores de GABA-A/metabolismo , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , Neuronas GABAérgicas/fisiología , Humanos , Neurogénesis , Multimerización de Proteína , Transporte de Proteínas , Receptores de GABA-A/química , Receptores de GABA-A/genética
15.
Eur J Neurosci ; 39(2): 165-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24325300

RESUMEN

Biochemical analysis of central nervous system proteins and nucleic acids requires fresh-tissue homogenates, whereas immunohistochemistry usually is performed in sections prepared from perfusion-fixed tissue. Post-mortem immersion-fixation is possible, but largely impairs morphological preservation and protein antigenicity. Here, we present a simple, fast and versatile protocol allowing concurrent biochemical and immunohistochemical analysis, including pre-embedding immunoelectron microscopy, using tissue from the same animal. The protocol includes a brief transcardiac perfusion with ice-cold, oxygenated and glucose-supplemented artificial cerebrospinal fluid to maintain brain tissue alive, prior to isolation of regions of interest, followed by homogenisation for biochemistry or immersion-fixation for immunohistochemistry. We provide several examples demonstrating that this protocol allows optimal biochemical and morphological analysis, characterised with optimal sensitivity and preservation of tissue structure, along with a reduction of artefacts typically seen in perfusion-fixed tissue. This protocol should find widespread applications for combining analytical methods in tissue from the same animal, thereby reducing the number of mice required for a given experiment.


Asunto(s)
Química Encefálica , Encéfalo/ultraestructura , Inmunohistoquímica/métodos , Animales , Western Blotting , Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/análisis , Proteínas de la Matriz Extracelular/análisis , Perfilación de la Expresión Génica/métodos , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica/métodos , Proteínas del Tejido Nervioso/análisis , Neuronas/química , Neuronas/citología , Perfusión , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de GABA-A/análisis , Proteína Reelina , Serina Endopeptidasas/análisis , Fracciones Subcelulares/química , Conservación de Tejido
16.
Nature ; 451(7176): 330-4, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-18202657

RESUMEN

Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.


Asunto(s)
Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores de GABA-A/metabolismo , Médula Espinal/metabolismo , Analgésicos/administración & dosificación , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Capsaicina/farmacología , Enfermedad Crónica/tratamiento farmacológico , Diazepam/administración & dosificación , Diazepam/metabolismo , Diazepam/farmacología , Modelos Animales de Enfermedad , Fluorobencenos/metabolismo , Fluorobencenos/farmacología , Formaldehído , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Calor , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos , Dolor/inducido químicamente , Dolor/prevención & control , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/química , Receptores de GABA-A/genética , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Triazoles/metabolismo , Triazoles/farmacología
17.
Proc Natl Acad Sci U S A ; 108(1): 379-84, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173228

RESUMEN

Postsynaptic scaffolding proteins ensure efficient neurotransmission by anchoring receptors and signaling molecules in synapse-specific subcellular domains. In turn, posttranslational modifications of scaffolding proteins contribute to synaptic plasticity by remodeling the postsynaptic apparatus. Though these mechanisms are operant in glutamatergic synapses, little is known about regulation of GABAergic synapses, which mediate inhibitory transmission in the CNS. Here, we focused on gephyrin, the main scaffolding protein of GABAergic synapses. We identify a unique phosphorylation site in gephyrin, Ser270, targeted by glycogen synthase kinase 3ß (GSK3ß) to modulate GABAergic transmission. Abolishing Ser270 phosphorylation increased the density of gephyrin clusters and the frequency of miniature GABAergic postsynaptic currents in cultured hippocampal neurons. Enhanced, phosphorylation-dependent gephyrin clustering was also induced in vitro and in vivo with lithium chloride. Lithium is a GSK3ß inhibitor used therapeutically as mood-stabilizing drug, which underscores the relevance of this posttranslational modification for synaptic plasticity. Conversely, we show that gephyrin availability for postsynaptic clustering is limited by Ca(2+)-dependent gephyrin cleavage by the cysteine protease calpain-1. Together, these findings identify gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/citología , Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Calpaína/metabolismo , Células Cultivadas , Electrofisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Inmunohistoquímica , Cloruro de Litio/farmacología , Neuronas/metabolismo , Fosforilación , Ratas , Espectrometría de Masas en Tándem
18.
J Neurosci ; 32(25): 8611-9, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723702

RESUMEN

GABAergic inhibition in the amygdala is essential in regulating fear and anxiety. Although fast "phasic" inhibition arising through the activation of postsynaptic GABA(A) receptors (GABA(A)Rs) has been well described in the amygdala, much less is known about extrasynaptic GABA(A)Rs mediating persistent or tonic inhibition and regulating neuronal excitability. Here, we recorded tonic currents in the basolateral (BLA) nucleus and the lateral (LA) nucleus of the amygdala. While all BLA principal cells expressed a robust GABAergic tonic current, only 70% of LA principal cells showed a tonic current. Immunohistochemical stainings revealed that the α3 GABA(A)R subunit is expressed moderately in the LA and strongly throughout the BLA nucleus, where it is located mostly at extrasynaptic sites. In α3 subunit KO mice, tonic currents are significantly reduced in BLA principal cells yet not in LA principal cells. Moreover, the α3 GABA(A)R-selective benzodiazepine site agonist and anxiolytic compound TP003 increases tonic currents and dampens excitability markedly in wild-type BLA principal cells but fails to do so in α3KO BLA cells. Interneurons of the LA and BLA nuclei also express a tonic current, but TP003-induced potentiation is seen in only a small fraction of these cells, suggesting that primarily other GABA(A)R variants underlie tonic inhibition in this cell type. Together, these studies demonstrate that α3 GABA(A)R-mediated tonic inhibition is a central component of the inhibitory force in the amygdala and that tonically activated α3 GABA(A)Rs present an important target for anxiolytic or fear-reducing compounds.


Asunto(s)
Amígdala del Cerebelo/citología , Receptores de GABA-A/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiolíticos/farmacología , Benzodiazepinas/farmacología , Interpretación Estadística de Datos , Diazepam/farmacología , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Genotipo , Inmunohistoquímica , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Receptores de Neurotransmisores/efectos de los fármacos
19.
J Neurosci ; 32(26): 9103-15, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22745509

RESUMEN

In mammals, olfactory bulb granule cells (GCs) are generated throughout life in the subventricular zone. GABAergic inputs onto newborn neurons likely regulate their maturation, but the details of this process remain still elusive. Here, we investigated the differentiation, synaptic integration, and survival of adult-born GCs when their afferent GABAergic inputs are challenged by conditional gene targeting. Migrating GC precursors were targeted with Cre-eGFP-expressing lentiviral vectors in mice with a floxed gene encoding the GABA(A) receptor α2-subunit (i.e., Gabra2). Ablation of the α2-subunit did not affect GC survival but dramatically delayed their maturation. We found a reduction in postsynaptic α2-subunit and gephyrin clusters accompanied by a decrease in the frequency and amplitude of GABAergic postsynaptic currents beginning ∼14 d post-injection (dpi). In addition, mutant cells exhibited altered dendritic branching and spine density. Spine loss appeared with mislocation of glutamatergic synapses on dendritic shafts and a reduction of spontaneous glutamatergic postsynaptic currents, underscoring the relevance of afferent GABAergic transmission for a proper synaptic integration of newborn GCs. To test the role of GABAergic signaling during much early stages of GC maturation, we used a genetic strategy to selectively inactivate Gabra2 in precursor cells of the subventricular zone. In these mice, labeling of newborn GCs with eGFP lentiviruses revealed similar morphological alterations as seen on delayed Gabra2 inactivation in migrating neuroblasts, with reduced dendritic branching and spine density at 7 dpi. Collectively, these results emphasize the critical role of GABAergic synaptic signaling for structural maturation of adult-born GCs and formation of glutamatergic synapses.


Asunto(s)
Células Madre Adultas/fisiología , Neuronas GABAérgicas/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Sinapsis/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Área Bajo la Curva , Proteínas Portadoras/metabolismo , Dendritas/fisiología , Estimulación Eléctrica , Transportador 1 de Aminoácidos Excitadores/genética , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Herbicidas/toxicidad , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/genética , Integrasas/genética , Integrasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Inmunoelectrónica , Proteínas del Tejido Nervioso , Neuronas/citología , Neuronas/ultraestructura , Nitrilos/toxicidad , Odorantes , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/lesiones , Técnicas de Placa-Clamp , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Privación Sensorial/fisiología , Sinapsis/genética , Sinapsis/ultraestructura , Tamoxifeno/farmacología
20.
Stroke ; 44(7): 1957-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23735955

RESUMEN

BACKGROUND AND PURPOSE: Arterial hypertension is an important risk factor for cerebrovascular diseases, such as transient ischemic attacks or stroke, and represents a major global health issue. The effects of hypertension on cerebral blood flow, particularly at the microvascular level, remain unknown. METHODS: Using the spontaneously hypertensive rat (SHR) model, we examined cortical hemodynamic responses on whisker stimulation applying a multimodal imaging approach (multiwavelength spectroscopy, laser speckle imaging, and 2-photon microscopy). We assessed the effects of hypertension in 10-, 20-, and 40-week-old male SHRs and age-matched male Wistar Kyoto rats (CTRL) on hemodynamic responses, histology, and biochemical parameters. In 40-week-old animals, losartan or verapamil was administered for 10 weeks to test the reversibility of hypertension-induced impairments. RESULTS: Increased arterial blood pressure was associated with a progressive impairment in functional hyperemia in 20- and 40-week-old SHRs; baseline capillary red blood cell velocity was increased in 40-week-old SHRs compared with age-matched CTRLs. Antihypertensive treatment reduced baseline capillary cerebral blood flow almost to CTRL values, whereas functional hyperemic signals did not improve after 10 weeks of drug therapy. Structural analyses of the microvascular network revealed no differences between normo- and hypertensive animals, whereas expression analyses of cerebral lysates showed signs of increased oxidative stress and signs of impaired endothelial homeostasis upon early hypertension. CONCLUSIONS: Impaired neurovascular coupling in the SHR evolves upon sustained hypertension. Antihypertensive monotherapy using verapamil or losartan is not sufficient to abolish this functional impairment. These deficits in neurovascular coupling in response to sustained hypertension might contribute to accelerate progression of neurodegenerative diseases in chronic hypertension.


Asunto(s)
Antihipertensivos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Animales , Antihipertensivos/administración & dosificación , Bloqueadores de los Canales de Calcio/administración & dosificación , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Losartán/administración & dosificación , Losartán/farmacología , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Espectrometría por Rayos X , Verapamilo/administración & dosificación , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA