Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(17): 2114-2126, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-36720090

RESUMEN

Activation of apoptosis in malignant cells is an established strategy for controlling cancer and is potentially curative. To assess the impact of concurrently inducing the extrinsic and intrinsic apoptosis-signaling pathways in acute myeloid leukemia (AML), we evaluated activity of the TRAIL receptor agonistic fusion protein eftozanermin alfa (eftoza; ABBV-621) in combination with the B-cell lymphoma protein-2 selective inhibitor venetoclax in preclinical models and human patients. Simultaneously stimulating intrinsic and extrinsic apoptosis-signaling pathways with venetoclax and eftoza, respectively, enhanced their activities in AML cell lines and patient-derived ex vivo/in vivo models. Eftoza activity alone or plus venetoclax required death receptor 4/5 (DR4/DR5) expression on the plasma membrane but was independent of TP53 or FLT3-ITD status. The safety/tolerability of eftoza as monotherapy and in combination with venetoclax was demonstrated in patients with relapsed/refractory AML in a phase 1 clinical trial. Treatment-related adverse events were reported in 2 of 4 (50%) patients treated with eftoza monotherapy and 18 of 23 (78%) treated with eftoza plus venetoclax. An overall response rate of 30% (7/23; 4 complete responses [CRs], 2 CRs with incomplete hematologic recovery, and 1 morphologic leukemia-free state) was reported in patients who received treatment with eftoza plus venetoclax and 67% (4/6) in patients with myoblasts positive for DR4/DR5 expression; no tumor responses were observed with eftoza monotherapy. These data indicate that combination therapy with eftoza plus venetoclax to simultaneously activate the extrinsic and intrinsic apoptosis-signaling pathways may improve clinical benefit compared with venetoclax monotherapy in relapsed/refractory AML with an acceptable toxicity profile. This trial was registered at www.clinicaltrials.gov as #NCT03082209.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/patología , Compuestos Bicíclicos Heterocíclicos con Puentes , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
Nature ; 558(7710): E1, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769713

RESUMEN

In the originally published version of this Letter, the authors Arthur F. Kluge, Michael A. Patane and Ce Wang were inadvertently omitted from the author list. Their affiliations are: I-to-D, Inc., PO Box 6177, Lincoln, Massachusetts 01773, USA (A.F.K.); Mitobridge, Inc. 1030 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (M.A.P.); and China Novartis Institutes for BioMedical Research, No. 4218 Jinke Road, Zhangjiang Hi-Tech Park, Pudong District, Shanghai 201203, China (C.W.). These authors contributed to the interpretation of results and design of compounds. In addition, author 'Edward A. Kesicki' was misspelled as 'Ed Kesicki'. These errors have been corrected online.

3.
Nature ; 550(7674): 128-132, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953875

RESUMEN

The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products, bi-substrate analogues and the widely used small molecule C646, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.


Asunto(s)
Linaje de la Célula , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Histona Acetiltransferasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Acetilcoenzima A/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Unión Competitiva , Biocatálisis/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/patología , Compuestos Heterocíclicos de 4 o más Anillos/química , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Modelos Moleculares , Neoplasias/enzimología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/patología , Conformación Proteica , Receptores Androgénicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982793

RESUMEN

The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.


Asunto(s)
Conexina 43 , Seudoobstrucción Intestinal , Animales , Ratones , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Adhesión Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Moléculas de Adhesión Celular/metabolismo
5.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30049711

RESUMEN

Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.


Asunto(s)
Hipocampo/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Animales , Hipocampo/citología , Interneuronas/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Neurregulinas , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Sinapsis/genética
6.
Bioessays ; 42(12): e2000031, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33174233

RESUMEN

Members of the CAR group of Ig-like type I transmembrane proteins mediate homotypic cell adhesion, share a common overall extracellular domain structure and are closely related at the amino acid sequence level. CAR proteins are often found at tight junctions and interact with intracellular scaffolding proteins, suggesting that they might modulate tight junction assembly or function. However, impairment of tight junction integrity has not been reported in mouse knockout models or zebrafish mutants of CAR members. In contrast, in the same knockout models deficits in gap junction communication were detected in several organ systems, including the atrioventricular node of the heart, smooth muscle cells of the intestine and the ureter and in Sertoli cells of the testes. Possible interactions between BT-IgSF and connexin41.8 on the disturbed pattern of pigment stripes found in zebrafish mutants and between ESAM and connexin43 during hematopoiesis in the mouse are also discussed. On the basis of the combined data and phenotypic similarities between CAR member mutants and connexin mutants I hypothesize that they primarily play a role in the organization of gap junction communication. Also see the video abstract here: https://youtu.be/i0yq2KhuDAE.


Asunto(s)
Uniones Comunicantes , Pez Cebra , Secuencia de Aminoácidos , Animales , Adhesión Celular , Conexinas , Corazón , Masculino , Ratones
7.
Dev Biol ; 445(1): 54-67, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385274

RESUMEN

The role of agrin, Lrp4 and MuSK, key organizers of neuromuscular synaptogenesis, in the developing CNS is only poorly understood. We investigated the role of these proteins in cultured mouse embryonic cortical neurons from wildtype and from Lrp4- and MuSK-deficient mice. Neurons from Lrp4-deficient mice had fewer but longer primary dendrites and a decreased density of puncta containing excitatory and inhibitory synapse-associated proteins. Neurons from MuSK-deficient mice had an altered dendritic branching pattern but no change in the density of puncta stained by antibodies against synapse-associated proteins. Transfection of TM-agrin compensated the dendritic branching deficits in Lrp4-deficient but not in MuSK-deficient neurons. TM-agrin transfection increased the density of excitatory synaptic puncta in MuSK-deficient but not in Lrp4-deficient mice and reduced the number of inhibitory synaptic puncta irrespective of MuSK and Lrp4 expression. Addition of purified soluble agrin to microisland cultures of cortical neurons revealed an Lrp4-dependent increase in the size and density of glutamatergic synaptic puncta and in mEPSC but not in mIPSC frequency and amplitude. Thus, agrin induced an Lrp4-independent increase in dendritic branch complexity, an Lrp4-dependent increase of excitatory synaptic puncta and an Lrp4- and MuSK-independent decrease in the density of puncta containing inhibitory synapse-associated proteins. These results establish selective roles for agrin, Lrp4 and MuSK during dendritogenesis and synaptogenesis in cultured CNS neurons.


Asunto(s)
Agrina/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de LDL/metabolismo , Sinapsis/metabolismo , Animales , Línea Celular , Células Cultivadas , Sistema Nervioso Central/patología , Dendritas/metabolismo , Femenino , Proteínas Relacionadas con Receptor de LDL , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis
8.
Osteoporos Int ; 31(10): 2037-2045, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32472294

RESUMEN

The results of this study show increased formation of bone in the subchondral areas in advanced stages of osteoarthritis of the knee. These changes seem to be influenced by mechanical factors. INTRODUCTION: Subchondral bone changes seem to contribute to the progression of knee osteoarthritis (OA). This study aimed to analyze subchondral bone microstructure in specimens of late-stage knee OA in respect to articular cartilage damage, meniscus integrity, and knee joint alignment. METHODS: Thirty proximal tibiae of 30 patients (20 female and 10 male) with late-stage OA retrieved during total knee arthroplasty were scanned using a high-resolution micro-computed tomography. The scans were semi-automatically segmented into five volumes of interest. The volumes of interest were then further analyzed using commercially available software. The degree of articular cartilage damage was assessed semi-quantitatively by magnetic resonance imaging before surgery. RESULTS: The mean bone fraction volume (bone volume/total volume (BV/TV)) in all weight-bearing locations was significantly higher compared to the non-weight-bearing reference point below the anterior cruciate ligament (p = 0.000). The mean BV/TV in the medial compartment was significantly higher compared to the lateral compartment (p = 0.007). As for the BV/TV in intact menisci, there was a significantly lower subchondral bone fraction volume compared to subluxated or luxated menisci in the medial (p = 0.020) and lateral compartment (p = 0.005). Varus alignment had a significantly higher subchondral BV/TV in the medial compartment, whereas valgus alignment had a significantly higher subchondral BV/TV in the lateral compartment (p = 0.011). CONCLUSIONS: The results show significant differences of subchondral bone microstructural parameters in respect to cartilage damage, meniscus' structural integrity, and knee joint alignment. Therefore, subchondral bone changes seem to be a secondary process in the late-stage OA of the knee caused by mechanical changes.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Cartílago Articular/diagnóstico por imagen , Femenino , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Masculino , Osteoartritis de la Rodilla/diagnóstico por imagen , Tibia/diagnóstico por imagen , Microtomografía por Rayos X
9.
J Neurosci ; 38(45): 9768-9780, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30249793

RESUMEN

cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant. Consequently, bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 mutants. In conclusion, our in vivo studies provide strong evidence that phosphorylation of the seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of Npr2-mediated cGMP signaling which affects physiological processes, such as axon bifurcation and bone growth.SIGNIFICANCE STATEMENT The branching of axons is a morphological hallmark of virtually all neurons. It allows an individual neuron to innervate different targets and to communicate with neurons located in different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2), a transmembrane guanylyl cyclase, is essential for the initiation of bifurcation of sensory axons when entering the spinal cord or the hindbrain. By using two genetically engineered mouse lines, we show that phosphorylation of specific serine and threonine residues in juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon bifurcation. These investigations might help to understand the regulation of Npr2 and its integration in intracellular signaling systems.


Asunto(s)
Axones/fisiología , Ganglios Sensoriales/fisiología , Receptores del Factor Natriurético Atrial/fisiología , Serina/metabolismo , Treonina/metabolismo , Animales , Femenino , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/fisiología , Embarazo , Células Receptoras Sensoriales/fisiología , Serina/genética , Treonina/genética
10.
J Pharmacol Exp Ther ; 371(3): 583-589, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562200

RESUMEN

Cancer cells are highly dependent on NAD+/NADH produced via the nicotinamide salvage pathway. The rate-limiting enzyme in this pathway is the nicotinamide phosphoribosyltransferase (NAMPT), which we have targeted with novel NAMPT inhibitors. NAMPT inhibition elicits depletion of total cellular NAD+ levels and ultimately cytotoxicity via depletion of cellular ATP levels. 18F-fluorodeoxyglucose- positron emission tomography (FDG-PET) is a translational imaging tool to assess glucose utilization in tumors and normal tissue. We used FDG-PET to understand the timing of ATP depletion in vivo and better understand the pharmacology of NAMPT inhibitors. Because of the intimate relationship between cellular ATP levels and cell viability, we developed an in-depth understanding of our NAMPT inhibitor pharmacology and the relationship with changes in tumor FDG uptake. Taken together, we show that FDG-PET could be used as a biomarker in clinical studies to understand dose and provide proof of mechanism for NAMPT inhibitors. SIGNIFICANCE STATEMENT: Our imaging data suggest that tumor 18F-fluorodeoxyglucose uptake can provide insight into the ATP status inside the tumor after nicotinamide phosphoribosyltransferase (NAMPT) therapy, with a novel NAMPT inhibitor. Such an approach could be used clinically as a pharmacodynamic biomarker to help understand the implications of dose, schedule, rescue strategy, or other clinical biomarkers.


Asunto(s)
Fluorodesoxiglucosa F18/farmacocinética , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Adenosina Trifosfato/metabolismo , Animales , Femenino , Células HCT116 , Humanos , Ratones , NAD/metabolismo
11.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135237

RESUMEN

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Asunto(s)
Antineoplásicos/farmacología , Indanos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indanos/química , Modelos Moleculares , Estructura Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Células Tumorales Cultivadas
12.
Bioorg Med Chem Lett ; 29(12): 1481-1486, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31014911

RESUMEN

In continuation of our previous research towards the discovery of potent, selective and drug-like Wee1 inhibitors, 2 novel series of biaryl heterocycles were designed, synthesized and evaluated. The new biaryl cores were designed to enable structure-activity exploration of substituents at C-8 or N-8 which were used for tuning compound properties and to improve compound profiles. The lead molecule 33 demonstrated a desirable pharmacokinetic profile and potentiated the anti-proliferative activity of irinotecan in vivo when dosed orally in the human breast MX-1 xenograft model.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Compuestos Heterocíclicos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Humanos , Relación Estructura-Actividad
13.
J Biol Chem ; 292(52): 21490-21503, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29123028

RESUMEN

The Ig-like cell adhesion molecule (IgCAM) BT-IgSF (brain- and testis-specific Ig superfamily protein) plays a major role in male fertility in mice. However, the molecular mechanism by which BT-IgSF supports fertility is unclear. Here, we found that it is localized in Sertoli cells at the blood-testis barrier (BTB) and at the apical ectoplasmic specialization. The absence of BT-IgSF in Sertoli cells in both global and conditional mouse mutants (i.e. AMHCre and Rosa26CreERT2 lines) resulted in male infertility, atrophic testes with vacuolation, azoospermia, and spermatogenesis arrest. Although transcripts of junctional proteins such as connexin43, ZO-1, occludin, and claudin11 were up-regulated in the absence of BT-IgSF, the functional integrity of the BTB was impaired, as revealed by injection of a BTB-impermeable component into the testes under in vivo conditions. Disruption of the BTB coincided with mislocalization of connexin43, which was present throughout the seminiferous epithelium and not restricted to the BTB as in wild-type tissues, suggesting impaired cell-cell communication in the BT-IgSF-KO mice. Because EM images revealed a normal BTB structure between Sertoli cells in the BT-IgSF-KO mice, we conclude that infertility in these mice is most likely caused by a functionally impaired BTB. In summary, our results indicate that BT-IgSF is expressed at the BTB and is required for male fertility by supporting the functional integrity of the BTB.


Asunto(s)
Barrera Hematotesticular/fisiología , Inmunoglobulinas/fisiología , Espermatogénesis/genética , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/metabolismo , Conexina 43/metabolismo , Fertilidad/fisiología , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ocludina/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
14.
Mol Cell Neurosci ; 81: 32-40, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27871939

RESUMEN

The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in the nervous system. In this review we put our focus on the biological function of a less understood subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP (CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are implicated in homotypic adhesion. They are highly expressed during embryonic development in a variety of tissues including the nervous system whereby in adult stages the protein level of CAR and CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present at the plasma membrane in larger protein complexes. Considerable progress has been made on the molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate synaptic function in the hippocampus.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Comunicación Celular , Inmunoglobulinas/metabolismo , Animales , Antígenos CD/química , Antígenos CD/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Neoplasias/genética
15.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29695045

RESUMEN

Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.


Asunto(s)
Axones/metabolismo , GMP Cíclico/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Animales , Biomarcadores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Susceptibilidad a Enfermedades , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Técnicas In Vitro , Receptores del Factor Natriurético Atrial/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Transmisión Sináptica
16.
Eur J Neurosci ; 44(12): 2991-3000, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27740716

RESUMEN

A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.


Asunto(s)
Axones/enzimología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/enzimología , Péptido Natriurético Tipo-C/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Péptido Natriurético Tipo-C/administración & dosificación , Transducción de Señal
17.
J Neurosci ; 34(3): 737-47, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431432

RESUMEN

Axonal branching is a prerequisite for the establishment of complex neuronal circuits and their capacity for parallel information processing. Previously, we have identified a cGMP signaling pathway composed of the ligand C-type natriuretic peptide (CNP), its receptor, the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), and the cGMP-dependent kinase Iα (cGKIα) that regulates axon bifurcation of dorsal root ganglion (DRG) neurons in the spinal cord. Now we asked whether this cascade also controls axon bifurcation elsewhere in the nervous system. An Npr2-lacZ reporter mouse line was generated to clarify the pattern of the CNP receptor expression. It was found that during the period of axonal outgrowth, Npr2 and cGKIα were strongly labeled in neurons of all cranial sensory ganglia (gV, gVII, gVIII, gIX, and gX). In addition, strong complementary expression of CNP was detected in the hindbrain at the entry zones of sensory afferents. To analyze axon branching in individual Npr2-positive neurons, we generated a mouse mutant expressing a tamoxifen-inducible variant of Cre recombinase expressed under control of the Npr2-promoter (Npr2-CreER(T2)). After crossing this strain with conditional reporter mouse lines, we revealed that the complete absence of Npr2 activity indeed prohibited the bifurcation of cranial sensory axons in their entrance region. Consequently, axons only turned in either an ascending or descending direction, while collateral formation and growth of the peripheral arm was not affected. These findings indicate that in neurons of the cranial sensory ganglia, as in DRG neurons, cGMP signals are necessary for the execution of an axonal bifurcation program.


Asunto(s)
Axones/química , Nervios Craneales/química , GMP Cíclico/genética , Receptores del Factor Natriurético Atrial/deficiencia , Células Receptoras Sensoriales/química , Transducción de Señal/genética , Animales , Axones/fisiología , Nervios Craneales/patología , Nervios Craneales/fisiología , GMP Cíclico/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/patología , Células Madre Embrionarias/fisiología , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/fisiología , Células Receptoras Sensoriales/patología
20.
Ultrasound Obstet Gynecol ; 44(3): 299-303, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24677292

RESUMEN

OBJECTIVE: To compare laser data, complications and neonatal outcome in pregnancies that undergo 'early' (≤ 17 weeks' gestation) fetoscopic laser ablation of placental vascular anastomoses for twin-twin transfusion syndrome (TTTS) with those from 'conventional' cases treated after 17 weeks. METHODS: This was a cohort study of data collected prospectively between January 2004 and December 2012. We included monochorionic diamniotic twin pregnancies complicated by TTTS and treated by fetoscopic laser coagulation. Pregnancies were grouped according to laser treatment ≤ 17 gestational weeks or > 17 weeks and obstetric and neonatal outcomes were compared between groups. RESULTS: A total of 178 pregnancies with TTTS underwent laser therapy: 40 at or before 17 weeks and 138 after 17 weeks. There was no statistically significant difference between these two groups with respect to the rate of preterm prelabor rupture of membranes (PPROM), gestational age at PPROM and rate of PPROM occurring in the 7 days following fetoscopic laser coagulation. In the early group, the interval between performing fetoscopic laser coagulation and the time of delivery was significantly longer (104 days vs 74 days, P=0.0002) and the delivery rate within 7 days of laser treatment was significantly lower (2.5% vs 15.9%, P=0.026). There was no significant difference between the two groups with regard to the rates of pregnancy without live birth (15.4% vs 15.4%, P=0.993), with one live birth (84.6% vs 84.6%, P=0.993) and with two live births (64.1% vs 58.1%, P=0.500). CONCLUSION: In the event of early TTTS, fetoscopic laser coagulation is technically feasible before 17 gestational weeks and obstetric and neonatal outcomes are comparable with those in cases of laser treatment performed after 17 weeks.


Asunto(s)
Transfusión Feto-Fetal/cirugía , Fetoscopía/métodos , Coagulación con Láser , Adulto , Estudios de Factibilidad , Femenino , Transfusión Feto-Fetal/complicaciones , Transfusión Feto-Fetal/diagnóstico por imagen , Edad Gestacional , Humanos , Recién Nacido , Coagulación con Láser/efectos adversos , Coagulación con Láser/métodos , Embarazo , Resultado del Embarazo , Segundo Trimestre del Embarazo , Estudios Prospectivos , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA