Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Pediatr ; 23(1): 593, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37993822

RESUMEN

BACKGROUND: Pressure Injuries are not exclusively an adult phenomenon; various risk factors contribute to a high prevalence rate of 43% in the neonatal and pediatric intensive care population. Effective preventive measures in this population are limited. METHODS: We performed a pilot study to analyze the distribution and localization of support surface interface pressures in neonates in a pediatric intensive care unit (PICU). The hypothesis was that pressure redistribution by a novel air mattress would reduce pressure peaks in critical neonates. The measurements were conducted in a 27-bed level III PICU between November and December 2020. This included measuring pressure distribution and pressure peaks for five neonates positioned on either a state-of-the-art foam mattress or a new prototype air mattress. RESULTS: We confirmed that the pressure peaks were significantly reduced using the prototype air mattress, compared with the state-of-the-art foam mattress. The reduction of mean pressure values was 9-29%, while the reduction of the highest 10% of pressure values was 23-41%. CONCLUSIONS: The journey to an effective, optimal, and approved product for severely ill neonates to reduce Pressure Injuries is challenging. However, a crucial step was completed by this pilot study with the first pressure measurements in a real-world setting and the successful realization of a decrease in pressure peaks obtained using a prototype air mattress.


Asunto(s)
Úlcera por Presión , Adulto , Recién Nacido , Niño , Humanos , Proyectos Piloto , Úlcera por Presión/prevención & control , Úlcera por Presión/epidemiología , Factores de Riesgo , Lechos , Unidades de Cuidado Intensivo Pediátrico
2.
J Neuroeng Rehabil ; 17(1): 47, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32272964

RESUMEN

BACKGROUND: Tremor is the most common movement disorder with the highest prevalence in the upper limbs. The mechanical suppression of involuntary movements is an alternative and additional treatment to medication or surgery. Here we present a new, soft, lightweight, task asjustable and passive orthosis for tremor suppression. METHODS: A new concept of a manual, textile-based, passive orthosis was designed with an integrated, task adjustable, air-filled structure, which can easily be inflated or deflated on-demand for a certain daily activity. The air-filled structure is placed on the dorsal side of the wrist and gets bent and compressed by movements when inflated. In a constant volume air-filled structure, air pressure increases while it is inflating, creating a counterforce to the compression caused by bending. We characterised the air-filled structure stiffness by measuring the reaction torque as a function of the angle of deflection on a test bench. Furthermore, we evaluated the efficacy of the developed passive soft orthosis by analysing the suppression of involuntary movements in the wrist of a tremor-affected patient during different activities of daily living (i.e. by calculating the power spectral densities of acceleration). RESULTS: By putting special emphasis on the comfort and wearability of the orthosis, we achieved a lightweight design (33 g). The measurements of the angular deflection and resulting reaction torques show non-linear, hysteretic, behaviour, as well as linear behaviour with a coefficient of determination (R2) between 0.95 and 0.99. Furthermore, we demonstrated that the soft orthosis significantly reduces tremor power for daily living activities, such as drinking from a cup, pouring water and drawing a spiral, by 74 to 82% (p = 0.03); confirmed by subjective tremor-reducing perception by the patient. CONCLUSION: The orthosis we developed is a lightweight and unobtrusive assistive technology, which suppresses involuntary movements and shows high wearability properties, with the potential to be comfortable. This air-structure technology could also be applied to other movement disorders, like spasticity, or even be integrated into future exoskeletons and exosuits for the implementation of variable stiffness in the systems.


Asunto(s)
Aparatos Ortopédicos , Diseño de Prótesis/métodos , Temblor/rehabilitación , Humanos , Masculino , Articulación de la Muñeca
3.
J Neuroeng Rehabil ; 16(1): 93, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31319893

RESUMEN

INTRODUCTION: Tremor is the most common movement disorder, affecting 5.6% of the population with Parkinson's disease or essential tremor over the age of 65. Conventionally, tremor diseases like Parkinson's are treated with medication. An alternative non-invasive symptom treatment is the mechanical suppression of the oscillation movement. The purpose of this review is to identify the weaknesses of past wearable tremor-suppression orthoses for the upper limb and identify the need for further research and developments. METHOD: A systematic literature search was conducted by performing a keyword combination search of the title, abstract and keyword sections in the four databases Web of Science, MedLine, Scopus, and ProQuest. Initially, the retrieved articles were selected by title and abstract using selection criteria. The same criteria were then applied to the full publication text. After the selection process, relevant information on the retrieved orthoses was isolated, sorted and analysed systematically. RESULTS: Forty-six papers, representing 21 orthoses, were identified and analysed according to the mechanical and ergonomic properties. The identified orthoses can be divided into 5 concepts and 16 functional prototypes, then subdivided further based upon their use of passive, semi-active, or active suppression mechanisms. Most of the orthoses concentrate on the wrist and elbow flexion and extension. They mainly rely on rigid structures and actuators while having tremor-suppression efficacies for tremorous subjects from 30 to 98% using power spectral density or other methods. CONCLUSION: The comparison of tremor-suppression orthoses considered and mapped their various mechanical and ergonomic properties, including the degrees of freedom, weight, suppression characteristics, and efficacies. This review shows that most of the orthoses are bulky and heavy, with a non-adapted human-machine interface which can cause rejection by the user. The main challenge of the design of an effective, minimally intrusive and portable tremor-suppressing orthosis is the integration of compact, powerful, lightweight, and non-cumbersome suppression mechanisms. None of the existing prototypes combine all the desired characteristics. Future research should focus on novel suppression orthoses and mechanisms with compact dimensions and light weight in order to be less cumbersome while giving a good tremor-suppression performance.


Asunto(s)
Aparatos Ortopédicos , Temblor/terapia , Ergonomía , Femenino , Humanos , Masculino , Temblor/fisiopatología , Extremidad Superior/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA