Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776958

RESUMEN

The ubiquitin-proteasome system mediates the degradation of a wide variety of proteins. Proteasome dysfunction is associated with neurodegenerative diseases and neurodevelopmental disorders in humans. Here we identified mutations in PSMC5, an AAA ATPase subunit of the proteasome 19S regulatory particle, in individuals with neurodevelopmental disorders, which were initially considered as variants of unknown significance. We have now found heterozygotes with the following mutations: P320R (6 individuals), R325W, Q160A, and one nonsense mutation at Q69. We focused on understanding the functional consequence of PSMC5 insufficiency and the P320R mutation in cells and found that both impair proteasome function and activate apoptosis. Interestingly, the P320R mutation impairs proteasome function by weakening the association between the 19S regulatory particle and the 20S core particle. Our study supports that proteasome dysfunction is the pathogenic cause of neurodevelopmental disorders in individuals carrying PSMC5 variants.

2.
J Biol Chem ; 300(5): 107144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458397

RESUMEN

Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) oncogenic fusion proteins are found in approximately 5% of non-small cell lung cancers. Different EML4-ALK fusion variants exist with variant 3 (V3) being associated with a significantly higher risk than other common variants, such as variant 1 (V1). Patients with V3 respond less well to targeted ALK inhibitors, have accelerated rates of metastasis, and have poorer overall survival. A pathway has been described downstream of EML4-ALK V3 that is independent of ALK catalytic activity but dependent on the NEK9 and NEK7 kinases. It has been proposed that assembly of an EML4-ALK V3-NEK9-NEK7 complex on microtubules leads to cells developing a mesenchymal-like morphology and exhibiting enhanced migration. However, downstream targets of this complex remain unknown. Here, we show that the microtubule-based kinesin, Eg5, is recruited to interphase microtubules in cells expressing EML4-ALK V3, whereas chemical inhibition of Eg5 reverses the mesenchymal morphology of cells. Furthermore, we show that depletion of NEK7 interferes with Eg5 recruitment to microtubules in cells expressing EML4-ALK V3 and cell length is reduced, but this is reversed by coexpression of a phosphomimetic mutant of Eg5, in a site, S1033, phosphorylated by NEK7. Intriguingly, we also found that expression of Eg5-S1033D led to cells expressing EML4-ALK V1 adopting a more mesenchymal-like morphology. Together, we propose that Eg5 acts as a substrate of NEK7 in cells expressing EML4-ALK V3 and Eg5 phosphorylation promotes the mesenchymal morphology typical of these cells.


Asunto(s)
Cinesinas , Quinasas Relacionadas con NIMA , Proteínas de Fusión Oncogénica , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Humanos , Fosforilación , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Mesodermo/metabolismo , Mesodermo/patología , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
3.
J Biol Chem ; 300(6): 107409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796063

RESUMEN

About 18% of all human cancers carry a mutation in the KRAS gene making it among the most sought-after anticancer targets. However, mutant KRas protein has proved remarkably undruggable. The recent approval of the first generation of RAS inhibitors therefore marks a seminal milestone in the history of cancer research. It also raises the predictable challenges of limited drug efficacies and acquired resistance. Hence, new approaches that improve our understanding of the tumorigenic mechanisms of oncogenic RAS within more physiological settings continue to be essential. Here, we have used the near-diploid hTERT RPE-1 cells to generate isogenic cell lines in which one of the endogenous KRAS alleles carries an oncogenic KRAS mutation at glycine 12. Cells with a KRASG12V/+, KRASG12C/+, or KRASG12D/+ genotype, together with WT KRASG12G(WT)/+ cells, reveal that oncogenic KRAS.G12X mutations increase cell proliferation rate and cell motility and reduced focal adhesions in KRASG12V/+ cells. Epidermal growth factor -induced phosphorylation of ERK and AKT was comparable between KRASG12V/+, KRASG12C/+, KRASG12D/+, and KRASG12G(WT)/+ cells. Interestingly, KRASG12X/+ cells showed varying responses to distinct inhibitors with the KRASG12V/+ and KRASG12D/+ cells more sensitive to hydroxyurea and MEK inhibitors, U0126 and trametinib, but more resistant to PI3K inhibitor, PIK-90, than the KRASG12G(WT)/+ cells. A combination of low doses of hydroxyurea and U0126 showed an additive inhibition on growth rate that was greater in KRASG12V/+ than WT cells. Collectively, these cell lines will be a valuable resource for studying oncogenic RAS signaling and developing effective anti-KRAS reagents with minimum cytotoxicity on WT cells.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Movimiento Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular/efectos de los fármacos , Telomerasa/genética , Telomerasa/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Pirimidinonas/farmacología , Piridonas/farmacología , Mutación Missense , Línea Celular , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Nitrilos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Butadienos/farmacología , Sustitución de Aminoácidos , Mutación
4.
Am J Hum Genet ; 108(1): 176-185, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33245860

RESUMEN

Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Factores de Crecimiento de Fibroblastos/genética , Mutación Missense/genética , Isoformas de Proteínas/genética , Adolescente , Secuencia de Aminoácidos , Niño , Exones/genética , Femenino , Mutación con Ganancia de Función/genética , Genes Ligados a X/genética , Heterocigoto , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/fisiología , Convulsiones/genética
5.
Exp Physiol ; 109(6): 939-955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643471

RESUMEN

Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.


Asunto(s)
Músculo Esquelético , Resistencia Física , Entrenamiento de Fuerza , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos , Resistencia Física/fisiología , Animales , Adaptación Fisiológica/fisiología , Ejercicio Físico/fisiología , Modelos Biológicos
6.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921875

RESUMEN

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/genética , Transmisión Sináptica/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo
7.
J Med Genet ; 60(2): 183-192, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35393335

RESUMEN

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Asunto(s)
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterocigoto , Homocigoto , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética
8.
Nucleic Acids Res ; 50(22): 13045-13062, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537190

RESUMEN

Sam68, also known as KHDRBS1, is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, nuclear magnetic resonance spectroscopy and cell biology techniques to provide a comprehensive post-translational modification mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Empalme Alternativo , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Fosforilación , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Células HCT116
9.
J Strength Cond Res ; 38(1): 74-79, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815260

RESUMEN

ABSTRACT: Philipp, NM, Crawford, DA, Cabarkapa, D, and Fry, AC. Strength and power thresholds to identify high and low linear sprint speed performers in collegiate American football players. J Strength Cond Res 38(1): 74-79, 2024-Lower-body strength and power are commonly measured performance qualities across a number of sports. In recent years, more attention has been given to relationships, primarily between lower-body strength and linear speed performance. While still limited, evidence is in agreement that lower-body strength positively contributes to linear speed performance. However, what is less well understood is if there comes a point in an athlete's development, at which, further working on increasing maximal strength may not fully compliment additional gains in speed performance. Within this study, authors aimed to provide practitioners with lower-body strength and power thresholds that can discriminate between slow and fast performers, within a group of collegiate American football players. The sample was further divided into a high-body and low-body weight group, and authors hypothesized that by using logistic regression, supplemented with receiver operator curve analyses, optimal cut-off points (i.e., relative lower-body strength thresholds) that are able to significantly discriminate between slow and fast linear speed performers may be identified. Findings indicate that optimal cut-off scores differed between the groups of athletes, as well as the lower body strength and power tests. All models were able to significantly distinguish between slower and faster performers, and area under the curve values ranged from 0.695 to 0.903. Although thresholds will likely vary based on factors such as sex, training age, and sport, findings from this investigation may be used to benchmark athletes and to further individualize training aimed at improving linear speed performance.


Asunto(s)
Rendimiento Atlético , Fútbol Americano , Humanos , Universidades , Atletas , Fuerza Muscular
10.
J Strength Cond Res ; 38(2): e72-e77, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38258833

RESUMEN

ABSTRACT: Cabarkapa, DV, Cabarkapa, D, Philipp, NM, and Fry, AC. Competitive season-long changes in countermovement vertical jump force-time metrics in female volleyball players. J Strength Cond Res 38(2): e72-e77, 2024-Although force plates remain one of the most widely used tools for neuromuscular performance assessment in applied sports-specific settings, there is still a lack of scientific literature focused on studying changes in countermovement vertical jump (CVJ) performance in team sports such as volleyball, especially within the female athlete population. Thus, the purpose of the present study was to examine season-long neuromuscular performance changes in volleyball players. Eighteen National Association of Intercollegiate Athletics Division-I collegiate female athletes performed 3 maximal-effort CVJs while standing on a uniaxial force plate system sampling at 1,000 Hz at 5 different testing timepoints throughout a competitive season span (∼11 weeks). The testing sessions were separated 2-3 weeks apart and performed at the approximately same time of the day (12:00 hours). Repeated-measures analysis of variance revealed that both concentric and eccentric force-time metrics remain relatively unchanged throughout a regular season span (e.g., concentric peak force and power, eccentric impulse and duration). However, the eccentric metrics such as peak and mean power and peak velocity displayed a slight improvement after a brief tapering period purposely implemented before the post-season competition to optimize the athlete's recovery (∼15, 18, and 14% increase, respectively). In addition, the outcome metrics such as vertical jump height and reactive strength index-modified did not display notable fluctuations across the competitive season span. These findings can help coaches, sports scientists, and strength and conditioning practitioners to obtain a deeper insight into collegiate female athletes' force-time characteristics that may aid with developing adequate training regimens targeted toward optimizing on-court performance.


Asunto(s)
Voleibol , Humanos , Femenino , Estaciones del Año , Atletas , Posición de Pie , Deportes de Equipo
11.
J Strength Cond Res ; 38(5): e253-e263, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241475

RESUMEN

ABSTRACT: Philipp, NM, Cabarkapa, D, Blackburn, SD, and Fry, AC. Dose-response relationship for external workload and neuromsuclar performance over a female, collegiate, basketball season. J Strength Cond Res 38(5): e253-e263, 2024-The aim of this study was to investigate the relationship between external workload exposure and changes in countermovement jump force-time characteristics over the course of an entire basketball season, in a sample of National Collegiate Athletic Association Division I, female, basketball players. Data for 12 players were retrospectively analyzed, with external workload being quantified by means of an exponentially weighted, acute, and chronic workload, as well as an acute:chronic workload ratio derived from an inertial measurement unit-based system worn by athletes for all practices and games during the regular season. Countermovement jumps were performed on a total of 26 test days over the span of the in-season competitive period. To statistically analyze these relationships, and to account for multiple observations of the same athletes in a data set, linear mixed-effects models with athlete identity (ID) intercept as the random effect were used. Study findings suggested that associations between external workload exposure and respective force-time characteristics after controlling for the random effect of athlete ID were dependent on the specific metric or metric subgroup used, as well as the type of workload exposure (e.g., acute vs. chronic). Force-time signatures from the braking phase (e.g., average braking force) seemed to be particularly associated with higher degrees of acute workload exposure, whereas strategy-based metrics such as countermovement depth showed significant associations with chronic workload exposure. Furthermore, model results suggested the importance of analyzing neuromuscular responses to external workload on an individual basis, rather than across an entire team. Findings might help practitioners in their selection process related to metrics of interest in monitoring neuromuscular fatigue and readiness.


Asunto(s)
Rendimiento Atlético , Baloncesto , Humanos , Femenino , Baloncesto/fisiología , Rendimiento Atlético/fisiología , Adulto Joven , Estudios Retrospectivos , Atletas/estadística & datos numéricos , Carga de Trabajo , Fuerza Muscular/fisiología
12.
J Strength Cond Res ; 38(7): 1326-1329, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38900179

RESUMEN

ABSTRACT: Cabarkapa, D, Johnson, QR, Cabarkapa, DV, Philipp, NM, Eserhaut, DA, and Fry, AC. Changes in countermovement vertical jump force-time metrics during a game in professional male basketball players. J Strength Cond Res 38(7): 1326-1329, 2024-As technology within elite basketball advances and is more available to sporting organizations, novel approaches for assessing and addressing athletic performance during practice or competition are being continuously explored. The aim of this investigation was to examine changes in neuromuscular performance during live basketball play. Eight professional male basketball players volunteered to participate in this study. The testing procedures were conducted during a pre-tournament camp over a span of 2 days. During the first day, the athletes were familiarized with the testing procedures, and baseline measurements were obtained. Using a uni-axial force plate system sampling at 1,000 Hz, each athlete performed 3 countermovement vertical jumps (CVJ) without an arm swing before proceeding with their regular training activities. During the second day of the pre-tournament camp, the athletes repeated identical CVJ testing procedures before the start of the first quarter and post-first, second, third, and fourth quarter of a simulated 5-on-5 basketball game. Repeated-measures testing design was used to examine statistically significant differences in various force-time metrics of interest in comparison to the baseline levels (p < 0.05). Besides a trivial decrease in eccentric mean force, the findings of this study revealed no statistically significant changes in any force-time metrics of interest within both eccentric and concentric phases of the CVJ (i.e., mean and peak force and power, jump height, impulse, velocity, and contraction time). Thus, we can conclude that these variables were not sensitive to acute fatigue, suggesting that the neuromuscular performances of professional male basketball players tend to remain unchanged throughout a 5-on-5 simulated game.


Asunto(s)
Rendimiento Atlético , Baloncesto , Humanos , Baloncesto/fisiología , Masculino , Rendimiento Atlético/fisiología , Adulto Joven , Fuerza Muscular/fisiología , Adulto , Movimiento/fisiología , Atletas , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Prueba de Esfuerzo/métodos
13.
EMBO Rep ; 22(12): e53693, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661367

RESUMEN

Variants of the oncogenic EML4-ALK fusion protein contain a similar region of ALK encompassing the kinase domain, but different portions of EML4. Here, we show that EML4-ALK V1 and V3 proteins form cytoplasmic foci that contain components of the MAPK, PLCγ and PI3K signalling pathways. The ALK inhibitors ceritinib and lorlatinib dissolve these foci and EML4-ALK V3 but not V1 protein re-localises to microtubules, an effect recapitulated in a catalytically inactive EML4-ALK mutant. Mutations that promote a constitutively active ALK stabilise the cytoplasmic foci even in the presence of these inhibitors. In contrast, the inhibitor alectinib increases foci formation of both wild-type and catalytically inactive EML4-ALK V3 proteins, but not a Lys-Glu salt bridge mutant. We propose that EML4-ALK foci formation occurs as a result of transient association of stable EML4-ALK trimers mediated through an active conformation of the ALK kinase domain. Our results demonstrate the formation of EML4-ALK cytoplasmic foci that orchestrate oncogenic signalling and reveal that their assembly depends upon the conformational state of the catalytic domain and can be differentially modulated by structurally divergent ALK inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasa de Linfoma Anaplásico/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología
14.
Eur J Appl Physiol ; 123(3): 585-599, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36383249

RESUMEN

AIM: The acute myocellular responses of caffeine supplementation during resistance exercise (RE) have not been investigated. ß2-Adrenergic receptors (ß2AR) may be a target of the stimulatory effects of caffeine and stimulate bioenergetic pathways including protein kinase A (PKA), and mitogen-activated protein kinases (MAPK). PURPOSE: Elucidate the effects of pre-workout supplementation on signaling responses to an acute RE bout. METHODS: In a randomized, counter-balanced, double-blind, placebo-controlled, within-subject crossover study, ten resistance-trained males (mean ± SD; age = 22 ± 2.4 years, height = 175 ± 7 cm, body mass = 84.1 ± 11.8 kg) consumed a caffeine containing multi-ingredient pre-workout supplement (SUPP) or color and flavor matched placebo (PL) 60 min prior to an acute RE bout of barbell back squats. Pre- and post-exercise muscle biopsies were analyzed for the phosphorylation (p-) of ß2AR, PKA, and MAPK (ERK, JNK, p38). Epinephrine was determined prior to supplementation (baseline; BL), after supplementation but prior to RE (PRE), and immediately after RE (POST). RESULTS: Epinephrine increased at PRE in SUPP (mean ± SE: 323 ± 34 vs 457 ± 68 pmol/l; p = 0.028), and was greatest at POST in the SUPP condition compared to PL (5140 ± 852 vs 2862 ± 498 pmol/l; p = 0.006). p-ß2AR and p-MAPK increased post-exercise (p < 0.05) with no differences between conditions (p > 0.05). Pearson correlations indicated there was a relationship between epinephrine and p-ß2AR in PL (r = - 0.810; p = 0.008), and p-ß2AR and ERK in SUPP (r = 0.941; p < 0.001). CONCLUSION: Consumption of a caffeine containing pre-workout supplement improves performance, possibly through increases in pre-exercise catecholamines. However, the acute myocellular signaling responses were largely similar post-exercise.


Asunto(s)
Cafeína , Entrenamiento de Fuerza , Masculino , Humanos , Adulto Joven , Adulto , Resistencia Física/fisiología , Proteínas Quinasas Activadas por Mitógenos/farmacología , Adrenérgicos/farmacología , Estudios Cruzados , Suplementos Dietéticos , Epinefrina , Método Doble Ciego
15.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32606248

RESUMEN

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Asunto(s)
Actinobacteria/genética , Antivirales/farmacología , Genoma Bacteriano , Macrólidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Sirolimus/química , Sirolimus/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
16.
Sensors (Basel) ; 23(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37177650

RESUMEN

Three-dimensional force plates are important tools for biomechanics discovery and sports performance practice. However, currently, available 3D force plates lack portability and are often cost-prohibitive. To address this, a recently discovered 3D force sensor technology was used in the fabrication of a prototype force plate. Thirteen participants performed bodyweight and weighted lunges and squats on the prototype force plate and a standard 3D force plate positioned in series to compare forces measured by both force plates and validate the technology. For the lunges, there was excellent agreement between the experimental force plate and the standard force plate in the X-, Y-, and Z-axes (r = 0.950-0.999, p < 0.001). For the squats, there was excellent agreement between the force plates in the Z-axis (r = 0.996, p < 0.001). Across axes and movements, root mean square error (RMSE) ranged from 1.17% to 5.36% between force plates. Although the current prototype force plate is limited in sampling rate, the low RMSEs and extremely high agreement in peak forces provide confidence the novel force sensors have utility in constructing cost-effective and versatile use-case 3D force plates.


Asunto(s)
Fenómenos Mecánicos , Movimiento , Humanos , Análisis Costo-Beneficio , Fenómenos Biomecánicos , Postura
17.
J Strength Cond Res ; 37(8): e470-e484, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494124

RESUMEN

ABSTRACT: Hermes, MJ and Fry, AC. Intentionally slow concentric velocity resistance exercise and strength adaptations: a meta-analysis. J Strength Cond Res 37(8): e470-e484, 2023-Intentionally slow-velocity resistance exercise (ISVRE) is suggested by some to be equally or more effective than fast or traditional velocities for increasing muscular strength. The purpose of this meta-analysis was to assess the effect ISVRE has on strength adaptations compared with faster or traditional velocities, with subgroup analyses exploring age, sex, and training status as confounding factors on the influence of velocity on strength adaptation. Eligible studies (n = 24) were required to be chronic (multiple weeks) randomized or nonrandomized comparative studies using dynamic constant external resistance for training and testing, and pre-post strength assessments. All studies examined healthy individuals (n = 625; fast or traditional n = 306, intentionally slow n = 319). A random-effects meta-analysis indicated a significant (p ≤ 0.05) effect in favor of fast training (effect size [ES] = 0.21, 95% confidence interval [CI] = 0.02-0.41, p = 0.03). Publication bias was noted through trim and fill analysis, with an adjusted effect size estimate of 0.32 (p < 0.001). Subgroup analyses indicated no difference between trained and untrained subjects (QM = 0.01, p = 0.93), and no difference between older and younger subgroups (QM = 0.09, p = 0.77), despite younger favoring faster (ES = 0.23, p = 0.049) and older not favoring either velocity (ES = 0.16, p = 0.46). Subgroup analysis also indicated women favored faster training (ES = 0.95, p < 0.001) in comparison to men (ES = 0.08, p = 0.58). Contrary to some previous reviews, these results indicate that chronic fast or traditional velocity resistance exercise increases muscular strength to a greater degree than ISVRE training. Resistance training velocity must be considered if strength is a desired outcome.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Femenino , Entrenamiento de Fuerza/métodos , Fuerza Muscular , Adaptación Fisiológica , Aclimatación
18.
J Strength Cond Res ; 37(4): 915-918, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730584

RESUMEN

ABSTRACT: Sontag, SA, Cabarkapa, D, and Fry, AC. Testosterone and cortisol salivary samples are stable across multiple freeze-thaw cycles. J Strength Cond Res 37(4): 915-918, 2023-When processing salivary samples for biomarker analysis, avoiding multiple freeze-thaw cycles is generally recommended. However, confusing tissue handling instructions or challenges with collections in the field sometimes makes this problematic. Thus, the purpose of this study was to examine if the stability of salivary testosterone (T) and cortisol (C) hormones remains unchanged when exposed to multiple freeze-thaw cycles. Seven healthy recreationally active adults provided salivary samples at rest (i.e., 1600 hours) for analysis of T and C. Samples were separated into 4 aliquots for each hormone and underwent 4 freeze-thaw cycles (T1-T4 and C1-C4) before being analyzed by enzyme-linked immunosorbent assay. The overall analysis of variance model was significant for T ( p = 0.008) and nonsignificant for C ( p = 0.820). A follow-up post hoc comparison indicated significant differences in salivary hormonal concentrations between T1 and T4 ( p = 0.029), T2 and T4 ( p = 0.007), and T3 and T4 ( p = 0.032). The findings of this study indicate that salivary steroid hormones seem to be relatively stable following multiple freeze-thaw cycles. However, C seems to be more stable when exposed to multiple freeze-thaw cycles, as T concentrations did reveal a significant decrease by the fourth thaw cycle.


Asunto(s)
Hidrocortisona , Testosterona , Adulto , Humanos , Congelación , Ensayo de Inmunoadsorción Enzimática
19.
J Strength Cond Res ; 37(8): 1687-1691, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494120

RESUMEN

ABSTRACT: Cabarkapa, D, Eserhaut, DA, Cabarkapa, DV, Philipp, NM, and Fry, AC. Salivary testosterone and cortisol changes during a game in professional male basketball players. J Strength Cond Res 37(8): 1687-1691, 2023-The purpose of this study was to examine acute changes in salivary testosterone (T), cortisol (C), and testosterone-to-cortisol ratio (T/C) during a simulated 5-on-5 basketball game. Seven professional male basketball players volunteered to participate in this study. Repeated-measures analysis design was used to examine changes in hormonal concentrations across 8 testing time points: immediately upon arrival to the gymnasium-baseline (BS); post-warm-up (PW); post-first (P1Q), second (P2Q), third (P3Q), and fourth quarter (P4Q); and 30 (P30) and 60 minutes (P60) postgame. The findings of this study indicate that a simulated 5-on-5 basketball game provoked significant changes in salivary T, C, and T/C. When compared to the BS levels (x̄ ± SD [nmol·L-1]; 6.72 ± 2.53), salivary C concentration experienced a notable increase P3Q (16.20 ± 7.70) and remained elevated throughout the rest of the sampling periods, with values failing to return to BS levels P60 (11.88 ± 5.58). Conversely, a significant increase in salivary T occurred P1Q (0.76 ± 0.21) when compared to the BS levels (0.58 ± 0.12) and remained elevated up to P30 (0.75 ± 0.20), with values returning to BS levels P60 (0.63 ± 0.14). In addition, despite no significant intragame alterations, T/C exhibited a notable decrease P30 (0.06 ± 0.02) and P60 (0.07 ± 0.04), when compared to BS values (0.10 ± 0.04). Overall, these findings provide additional insight into the physiological stress that basketball players are exposed to during 5-on-5 competitive play and can be used to appropriately adjust and monitor training loads to optimize recovery and on-court basketball performance.


Asunto(s)
Rendimiento Atlético , Baloncesto , Humanos , Masculino , Hidrocortisona/análisis , Testosterona , Rendimiento Atlético/fisiología , Baloncesto/fisiología , Estrés Fisiológico
20.
J Strength Cond Res ; 37(10): e563-e568, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729519

RESUMEN

ABSTRACT: Chiu, LZF, Fry, AC, Galpin, AJ, Salem, GJ, and Cabarkapa, D. Regulatory light-chain phosphorylation during weightlifting training: association with postactivation performance enhancement. J Strength Cond Res 37(10): e563-e568, 2023-Postactivation performance enhancement has been reported for multijoint resistance exercise, with both neural and intrinsic muscle mechanisms suggested as contributing factors. The purpose of this investigation was to examine whether regulatory light-chain (RLC) phosphorylation in a primary mover is associated with enhanced weightlifting performance. Nine male athletes performed 15 sets of 3 repetitions of a multijoint weightlifting activity (clean pull) at 85% 1 repetition maximum. Measures of performance, peak barbell velocity (PV), and average barbell power (AP) were determined by video analysis. Muscle biopsies were taken within 30-60 seconds of completion of the previous lifting set from the vastus lateralis before (PRE), during (MID), and after (POST) a training session. AP was significantly greater for sets 3, 4, and 5 compared with set 1, with large effect sizes (0.8-1.0). Increases in PV did not reach significance; however, the effect size increase for sets 3 and 4 versus set 1 was moderate (0.4). Relative change scores for AP and RLC phosphorylation were positively and negatively correlated at MID (r = 0.60; p = 0.05) and POST (r = -0.74; p = 0.01) exercise, respectively. These data suggest that RLC phosphorylation initially may be associated with postactivation performance enhancement during repeated multijoint exercise.


Asunto(s)
Ejercicio Físico , Levantamiento de Peso , Masculino , Humanos , Fosforilación , Atletas , Biopsia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA