Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chem Soc Rev ; 53(3): 1514-1551, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38167899

RESUMEN

Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.


Asunto(s)
Materiales Biocompatibles Revestidos
2.
Small ; 20(5): e2305649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752691

RESUMEN

In situ polymerization to prepare quasi-solid electrolyte has attracted wide attentions for its advantage in achieving intimate electrode-electrolyte contact and the high process compatibility with current liquid batteries; however, gases can be generated during polymerization process and remained in the final electrolyte, severely impairing the electrolyte uniformity and electrochemical performance. In this work, an in situ polymerized poly(vinylene carbonate)-based quasi-solid electrolyte for high-voltage sodium metal batteries (SMBs) is demonstrated, which contains a novel multifunctional additive N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). MSTFA as high-efficient plasticizer diminishes residual gases in electrolyte after polymerization; the softer and homogeneous electrolyte enables much faster ionic conduction. The HF/H2 O scavenge effect of MSTFA mitigates the corrosion of free acid to cathode and interfacial passivating layers, enhancing the cycle stability under high voltage. As a result, the 4.4 V Na||Na3 V2 (PO4 )2 F3 cell employing the optimized electrolyte possesses an initial discharge capacity of 112.0 mAh g-1 and a capacity retention of 91.3% after 100 cycles at 0.5C, obviously better than those of its counterparts without MSTFA addition. This work gives a pioneering study on the gas residue phenomenon in in situ polymerized electrolytes, and introduces a novel multifunctional silane additive that effectively enhances electrochemical performance in high-voltage SMBs, showing practical application significance.

3.
Protein Expr Purif ; 220: 106502, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38754753

RESUMEN

Adeno-associated Virus (AAV) is a promising vector for gene therapy. However, few studies have focused on producing virus-like particles (VLPs) of AAV in cells, especially in E. coli. In this study, we describe a method to produce empty VP3-only VLPs of AAV2 in E. coli by co-expressing VP3 and assembly-activating protein (AAP) of AAV2. Although the yields of VLPs produced with our method were low, the VLPs were able to self-assemble in E. coli without the need of in vitro capsid assembly. The produced VLPs were characterized by immunological detection and transmission electron microscopy (TEM). In conclusion, this study demonstrated that capsid assembly of AAV2 is possible in E. coli, and E. coli may be a candidate system for production of VLPs of AAV.


Asunto(s)
Proteínas de la Cápside , Dependovirus , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dependovirus/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/biosíntesis , Virión/genética , Virión/metabolismo , Ensamble de Virus , Vectores Genéticos/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/química , Parvovirinae/genética , Humanos
4.
Small ; 19(11): e2205689, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36585395

RESUMEN

Designing nonprecious metal-based electrocatalysts to yield sustainable hydrogen energy by large-scale seawater electrolysis is challenging to global emissions of carbon neutrality and carbon peaking. Herein, a series of highly efficient, economical, and robust Ni-P-based nanoballs grown on the flexible and anti-corrosive hydrophobic asbestos (NiPx @HA) is synthesized by electroless plating at 25 °C toward alkaline simulated seawater splitting. On the basis of the strong chemical attachment between 2D layered substrate and nickel-rich components, robust hexagonal Ni5 P4 crystalline modification, and fast electron transfer capability, the overpotentials during hydrogen/oxygen evolution reaction (HER/OER) are 208 and 392 mV at 200 mA cm-2 , and the chronopotentiometric measurement at 500 mA cm-2 lasts for over 40 days. Additionally, the versatile strategy is broadly profitable for industrial applications and enables multi-elemental doping (iron/cobalt/molybdenum/boron/tungsten), flexible substrate employment (nickel foam/filter paper/hydrophilic cloth), and scalable synthesis (22 cm × 22 cm). Density functional theory (DFT) also reveals that the optimized performance is due to the fundamental effect of incorporating O-source into Ni5 P4 . Therefore, this work exhibits a complementary strategy in the construction of NiPx -based electrodes and offers bright opportunities to produce scalable hydrogen effectively and stably in alkaline corrosive electrolytes.

5.
Small ; 18(47): e2203588, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36287089

RESUMEN

Mild construction of highly efficient and durable practical electrodes for overall water splitting (OWS) at industrial-grade current density is currently a significant challenge. Herein, metal-organic framework (MOF) materials are grown in situ on the surface of carbon cloth (CC) at 25 °C, and quickly "interspersed" by cobalt-boron (Co-B) via electroless plating for 30 min to obtain a highly efficient and stable CoB@MOF@CC self-supporting electrode. Owing to the large specific surface area, abundant active sites, and porous structure, the MOF-based CC modified by bamboo leaf-like ultrathin CoB has remarkable electrochemical catalysis efficiency. The CoB@MOF@CC electrode exhibits excellent performance during the hydrogen evolution reaction (η10  = 57 mV, η500  = 266 mV) and oxygen evolution reaction (η10  = 209 mV, η500  = 423 mV) in alkaline simulated seawater, and is durable for 2500 h at 500 mA cm-2 . The OWS performance is obviously enhanced by employing the prepared electrode, which only requires 1.49 V to achieve 10 mA cm-2 and is durable for over 360 h at industrial-grade current densities in alkaline high-salt, real seawater, rainwater, and urea electrolytes.


Asunto(s)
Estructuras Metalorgánicas , Tacto , Catálisis , Electrodos , Agua/química , Carbono , Agua de Mar
6.
Carcinogenesis ; 40(1): 131-144, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30239617

RESUMEN

LZ-106, a newly synthetized analog of quinolone, has been shown to be highly effective in non-small cell lung cancer (NSCLC) in both cultured cells and xenograft mouse model with low toxicity, yet the molecular mechanisms still require exploration. Here, we substantiated the involvement of P53 activation in intracellular reactive oxygen species (ROS) generation upon LZ-106 treatment and related P53 to the ROS-induced viability inhibition and apoptosis, which was exhibited in the previous research. P53 was shown to play an indispensable role in the elevated levels of intracellular ROS in LZ-106-treated NSCLC cells through ROS detection. We further identified the anti-proliferation effect of LZ-106 in NSCLC cells through G1 phase cell cycle arrest by cell cycle analysis, with the expression analysis of the key proteins, and discovered that the cell cycle arrest effect is also mediated by induction of ROS in a P53-dependent manner. In addition, the tumor suppression effect exhibited in vivo was demonstrated to be similar to that in vitro, which requires the participation of P53. Thus, LZ-106 is a potent antitumor drug possessing potent proliferation inhibition and apoptosis induction ability through the P53-dependent ROS modulation both in vitro and in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Enoxacino/análogos & derivados , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C
7.
Appl Opt ; 56(26): 7358-7366, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-29048057

RESUMEN

Risley prisms appear to be a promising solution to high-accuracy pointing and tracking. To improve the pointing accuracy of achromatic Risley prisms, an appropriate mathematical model is established, and the forward and inverse solutions are proposed. Focusing on the sources of systematic errors, an optimization method based on a genetic algorithm is proposed to identify the parameters of the physical model, including wedge angles, refractive indexes, and installations. Finally, the experimental platform is established. The pointing accuracy and the size of the blind zone are tested to prove the validity of the method. Experimental results show that the proposed method is effective to reduce the influence of manufacturing, installation, and measurement errors. The optimized pointing accuracy has been improved significantly. Within the maximum deflection angle of 3°, the maximum pointing error is reduced from 33 arcsec to less than 1 arcsec. And the angular dynamic range is found to be greater than 43 dB, able to meet the needs of the majority of applications. In addition, the test of the blind zone shows that the optimized parameters are consistent with the actual system.

8.
Sensors (Basel) ; 17(3)2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28264504

RESUMEN

The charge couple device (CCD) tracking loop of a fast steering mirror (FSM) is usually used to stabilize line of sight (LOS). High closed-loop bandwidth facilitates good performance. However, low-rate sample and time delay of the CCD greatly limit the high control bandwidth. This paper proposes an error-based observer (EBO) to improve the low-frequency performance of the CCD tracking system. The basic idea is by combining LOS error from the CCD and the controller output to produce the high-gain observer, forwarding into the originally closed-loop control system. This proposed EBO can improve the system both in target tracking and disturbance suppression due to LOS error from the CCD's sensing of the two signals. From a practical engineering view, the closed-loop stability and robustness of the EBO system are investigated on the condition of gain margin and phase margin of the open-loop transfer function. Two simulations of CCD experiments are provided to verify the benefits of the proposed algorithm.

9.
Sensors (Basel) ; 16(7)2016 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-27347970

RESUMEN

A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

10.
Sci Rep ; 14(1): 17947, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095417

RESUMEN

C-H bond activation under mild conditions remains a great challenge in the chemical industry, while catalytic cyclohexane oxidation is inefficient and often requires organic solvents and strong oxidants. This study constructed a C3N4/WO3 Z-type heterojunction catalyst to efficiently convert cyclohexane into cyclohexanone and cyclohexanol (KA oil) through aqueous phase oxidation by O2 under visible light irradiation. With strong redox performance and high photogenerated carrier separation ability, the proposed composite catalyst can produce the key active species for cyclohexane oxidation in the H2O-O2 system. The reaction mechanism was clarified through experiment and DFT theory calculation. Cyclohexane was converted into cyclohexyl radical under the action of ·OH, and ·O2- converted most products into cyclohexanone. The catalyst can be recycled under optimized process conditions while reaching a KA oil yield of 139.73 µmol g-1 h-1 and a selectivity of 93.1%.

11.
Psychol Psychother ; 97(1): 173-186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37902282

RESUMEN

OBJECTIVE: This study investigates the impact of mindful parenting on child behaviour problems and examines the chain mediating role of parental and child communicating performance in this relationship. METHODS: A 10-month follow-up survey was conducted, utilizing the Interpersonal Mindfulness in Parenting Scale (IM-P), the Parent-Child Communication Inventory, and the abbreviated version of the Child Behaviour Checklist (CBCL). RESULTS: At baseline (T1), higher levels of mindful parenting in parents were significantly and positively associated with both T1 parental communicating performance and child communicating performance. After 10 months, all three variables showed significant negative associations with child behaviour problems. T1 parental communication performance positively correlated with T1 child communication performance. After controlling for T1 child behaviour problems, children's gender and age, and parents' gender, the indirect association between T1 parents' levels of mindful parenting and T2 child behaviour problems was significant, mediated by T1 parental communicating performance and T1 child communicating performance. CONCLUSION: Mindful parenting enhances parental communication behaviour, leading to improved child communication behaviour and reduced child behaviour problems.


Asunto(s)
Atención Plena , Problema de Conducta , Humanos , Niño , Responsabilidad Parental , Padres , Conducta Infantil
12.
RSC Adv ; 14(21): 14716-14721, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38716097

RESUMEN

Halide solid-state electrolytes (SSEs) are considered promising candidates for practical applications in all-solid-state batteries (ASSBs), due to their outstanding high voltage stability and compatibility with electrode materials. However, Na+ halide SSEs suffer from low ionic conductivity and high activation energy, which limit their applications in sodium all-solid-state batteries. Here, sodium yttrium bromide solid-state electrolytes (Na3YBr6) with a low activation energy of 0.15 eV is prepared via solid state reaction. Structure characterization using X-ray diffraction reveals a monoclinic structure (P21/c) of Na3YBr6. First principle calculations reveal that the low migration activation energy comes from the larger size and vibration of Br- anions, both of which expand the Na+ ion migration channel and reduce its activation energy. The electrochemical window of Na3YBr6 is determined to be 1.43 to 3.35 V vs. Na/Na+, which is slightly narrower than chlorides. This work indicates bromides are a good catholyte candidate for sodium all solid-state batteries, due to their low ion migration activation energy and relatively high oxidation stability.

13.
Nat Commun ; 15(1): 4315, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773104

RESUMEN

To enable high performance of all solid-state batteries, a catholyte should demonstrate high ionic conductivity, good compressibility and oxidative stability. Here, a LaCl3-based Na+ superionic conductor (Na1-xZrxLa1-xCl4) with high ionic conductivity of 2.9 × 10-4 S cm-1 (30 °C), good compressibility and high oxidative potential (3.80 V vs. Na2Sn) is prepared via solid state reaction combining mechanochemical method. X-ray diffraction reveals a hexagonal structure (P63/m) of Na1-xZrxLa1-xCl4, with Na+ ions forming a one-dimensional diffusion channel along the c-axis. First-principle calculations combining with X-ray absorption fine structure characterization etc. reveal that the ionic conductivity of Na1-xZrxLa1-xCl4 is mainly determined by the size of Na+-channels and the Na+/La3+ mixing in the one-dimensional diffusion channels. When applied as a catholyte, the NaCrO2||Na0.7Zr0.3La0.7Cl4||Na3PS4||Na2Sn all-solid-state batteries demonstrate an initial capacity of 114 mA h g-1 and 88% retention after 70 cycles at 0.3 C. In addition, a high capacity of 94 mA h g-1 can be maintained at 1 C current density.

14.
J Biol Chem ; 287(7): 5112-21, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22187429

RESUMEN

Saframycin A (SFM-A) is a potent antitumor antibiotic that belongs to the tetrahydroisoquinoline family. Biosynthetic studies have revealed that its unique pentacyclic core structure is derived from alanine, glycine, and non-proteinogenic amino acid 3-hydroxy-5-methyl-O-methyltyrosine (3-OH-5-Me-OMe-Tyr). SfmD, a hypothetical protein in the biosynthetic pathway of SFM-A, was hypothesized to be responsible for the generation of the 3-hydroxy group of 3-OH-5-Me-OMe-Tyr based on previously heterologous expression results. We now report the in vitro characterization of SfmD as a novel heme-containing peroxidase that catalyzes the hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine using hydrogen peroxide as the oxidant. In addition, we elucidated the biosynthetic pathway of 3-OH-5-Me-OMe-Tyr by kinetic studies of SfmD in combination with biochemical assays of SfmM2, a methyltransferase within the same pathway. Furthermore, SacD, a counterpart of SfmD involved in safracin B biosynthesis, was also characterized as a heme-containing peroxidase, suggesting that SfmD-like heme-containing peroxidases may be commonly involved in the biosynthesis of SFM-A and its analogs. Finally, we found that the conserved motif HXXXC is crucial for heme binding using comparative UV-Vis and Magnetic Circular Dichroism (MCD) spectra studies of SfmD wild-type and mutants. Together, these findings expand the category of heme-containing peroxidases and set the stage for further mechanistic studies. In addition, this study has critical implications for delineating the biosynthetic pathway of other related tetrahydroisoquinoline family members.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metiltirosinas/metabolismo , Peroxidasa/metabolismo , Secuencias de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Catálisis , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxilación/fisiología , Isoquinolinas/metabolismo , Metiltirosinas/genética , Peroxidasa/química , Peroxidasa/genética
15.
Zhongguo Zhong Yao Za Zhi ; 38(10): 1539-42, 2013 May.
Artículo en Zh | MEDLINE | ID: mdl-23947133

RESUMEN

Nine compounds were isolated and purified by column chromatographic techniques including macroporous resin, silica gel, ODS, Sephadex LH-20, and preparative reversed-phase HPLC. Their structures were elucidated as taxifolin (1), naringenin (2), chalconaringenin (3), acacetin (4), quercetin 3-O-beta-D-galactopyranoside (5), 6-prenylnaringenin (6) xanthohumol (7), desmethylxanthohumol (8), xanthohumol B (9) on the basis of MS and NMR spectroscopic data analysis. Compounds 1-5 were isolated from Humulus lupulus for the first time.


Asunto(s)
Medicamentos Herbarios Chinos/química , Flavonoides/química , Dextranos/química , Flavanonas/química , Humulus/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Quercetina/análogos & derivados , Quercetina/química
16.
J Colloid Interface Sci ; 634: 804-816, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565622

RESUMEN

It is essential to construct self-supporting electrodes based on earth-abundant iron borides in a mild and economical manner for grid-scale hydrogen production. Herein, a series of highly efficient, flexible, robust, and scalable Fe-B-O@FeBx modified on hydrophilic cloth (denoted as Fe-B-O@FeBx/HC, 10 cm × 10 cm) are fabricated by mild electroless plating. The overpotentials and Tafel slope values for the hydrogen and oxygen evolution reactions are 59 mV and 57.62 mV dec-1 and 181 mV and 65.44 mV dec-1, respectively; only 1.462 V is required to achieve 10 mA cm-2 during overall water splitting (OWS). Fe-B-O@FeBx/HC maintains its high catalytic activity for more than 7 days at an industrial current density (400 mA cm-2), owing to the loosened popcorn-like Fe-B-O@FeBx that is firmly loaded on a 2D-layered and mechanically robust substrate along with its fast charge and mass transfer kinetics. The chimney effect of core-shell borides@(oxyhydro)oxides enhances the OWS performance and protects the inner metal borides from further corrosion. Moreover, the flexible Fe-B-O@FeBx/HC electrode has a low cost for grid-scale hydrogen production ($2.97 kg-1). The proposed strategy lays a solid foundation for universal preparation, large-scale hydrogen production and practical applications thereof.

17.
J Colloid Interface Sci ; 645: 227-240, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37149997

RESUMEN

The mild and rapid construction of economical, efficient and ultrastable electrodes for hydrogen production via water splitting at industrial-grade current density remains extremely challenging. Herein, a one-step mild electroless plating method is proposed to deposit cobalt phosphorus (CoP)-based species on robust nickel net (NN, denoted as Co-P@NN). The tight interfacial contact, corrosion-proof self-supporting substrate and synergistic effect of Co-P@Co-O contribute greatly to the rapid electron transport, high intrinsic activity and long-term durability in the alkaline simulated seawater (1.0 M KOH + 0.5 M NaCl). Attractively, Co-P@Co-O also achieves ultrastable catalysis for over 2880 h with negligible activity attenuation under various alkaline extreme conditions (simulated seawater, high-salt environment, domestic sewage and so on). Furthermore, this work successfully constructs a series of ternary elemental doped (Ni, S, B, Fe and so on) CoP-based catalytic electrodes for highly efficient overall seawater splitting (OSWS). This work demonstrates not only an ideal platform for the versatile strategy of mildly obtaining CoP-based electrocatalysts but also the pioneering philosophy of large-scale hydrogen production.

18.
Colloids Surf B Biointerfaces ; 225: 113239, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889106

RESUMEN

Coatings with both anti-fouling and bactericidal functions are used in many fields. In this work, lysozyme (Lyso) and poly (2-Methylallyloxyethyl phosphorylcholine) (PMPC) conjugate (Lyso-PMPC) is successfully designed and synthesized for the first time. A new nanofilm (PTL-PMPC) is then obtained by phase transition of lysozyme via the reduction of disulfide bonds in Lyso-PMPC. Benefit from lysozyme amyloid-like aggregates as surface anchors, the nanofilm shows excellent stability, it remains unchanged after treatment under extreme conditions such as ultrasonic and 3 M tape peeling. Due to the presence of zwitterionic polymer (PMPC) brush, the PTL-PMPC film has excellent antifouling properties against cell, bacterium, fungi, proteins, biofluids, phosphatide, polyose, esters, and carbohydrates. Meanwhile, the PTL-PMPC film is colourless and transparent. Further, a new coating (PTL-PMPC/PHMB) is fabricated by hybridizing PTL-PMPC with poly (hexamethylene biguanide) (PHMB). This coating had excellent antibacterial properties, and the antibacterial rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) is more than 99.99%. In addition, the coating exhibit good hemocompatibility and low cytotoxicity.


Asunto(s)
Incrustaciones Biológicas , Muramidasa , Muramidasa/farmacología , Incrustaciones Biológicas/prevención & control , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química
19.
ACS Appl Mater Interfaces ; 15(8): 10426-10440, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791143

RESUMEN

Polyetheretherketone (PEEK), a widely used implant material, has attracted the attention of scientific researchers because of its bone-matched elastic modulus, radiolucency, and chemical resistance. However, the bioinert chemical properties of PEEK do not promote bone apposition once implanted. In this study, using a phase-transitioned lysozyme (PTL) nanofilm as a sandwiched layer, a robust hydroxyapatite (HAp) coating on PEEK (HAp@PTL@PEEK) is constructed. The PTL nanofilm shows strong adhesion to the PEEK surface and induces biomimetic mineralization to form a compact HAp coating on PEEK in simulated body fluids. This HAp coating not only shares a higher adhesion strength and better stability but can also be applied to implants with complex 3D structures. HAp@PTL@PEEK showed significantly enhanced osteogenic capacity when cultured with rat bone marrow mesenchymal stem cells by promoting initial cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo evaluations utilizing models of femoral condyle defects and skull defects confirm that the HAp coating substantially augments bone remodeling and osseointegration ability. Compared with the traditional method, our modified method is simpler, more environmentally friendly, and uses less hazardous components. Furthermore, the obtained HAp coating shares a higher adhesion strength to PEEK and a better osteogenic capacity. The study offers a novel method to improve the osseointegration of PEEK-based implants in biointerfaces and tissue engineering.


Asunto(s)
Oseointegración , Osteogénesis , Ratas , Animales , Biomimética , Polímeros , Polietilenglicoles/química , Benzofenonas , Cetonas/química , Durapatita/química , Propiedades de Superficie
20.
J Colloid Interface Sci ; 626: 384-394, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35803138

RESUMEN

The development of fast and mild preparation of transition metal electrocatalysts for efficient and ultra-stable water electrolysis in wide pH range electrolytes is essential for hydrogen energy supply. Herein, ultrathin and metastable FeS nanolayer self-supported on 3D porous iron foam (IF) substrate is fabricated via one-step mild sulfurization etching for only 2 h to obtain FeS@IF electrode, which achieves efficient and long-term hydrogen evolution in alkaline simulated seawater (1.0 M KOH + 0.5 M NaCl), neutral electrolyte (1.0 M PBS) and other corrosive systems. The overpotentials are only 63 mV and 78 mV to drive 10 mA cm-2 during hydrogen evolution in 1.0 M KOH + 0.5 M NaCl and 1.0 M PBS, respectively. Additionally, the FeS@IF electrode continuously catalyzes for over 600 h at 0.2-0.4 A cm-2 in 1.0 M PBS with negligible performance loss, partly attributed to FeS nanolayer firmly etching on the surface and the formation of corrosion-resistant ultrathin nano fan-like iron sulfide oxide (FeOxSy). This uniformly-distributed morphology helps to facilitate the interfacial electron transmission between active species and substrate, expose more active sites, and provide moderate channels for the rapid liberation of gas bubbles and mass transfer. This work proposes a novel strategy for developing efficient and stable catalysts for hydrogen production in wide pH range systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA