RESUMEN
Thermal insulation under extreme conditions requires materials that can withstand complex thermomechanical stress and retain excellent thermal insulation properties at temperatures exceeding 1,000 degrees Celsius1-3. Ceramic aerogels are attractive thermal insulating materials; however, at very high temperatures, they often show considerably increased thermal conductivity and limited thermomechanical stability that can lead to catastrophic failure4-6. Here we report a multiscale design of hypocrystalline zircon nanofibrous aerogels with a zig-zag architecture that leads to exceptional thermomechanical stability and ultralow thermal conductivity at high temperatures. The aerogels show a near-zero Poisson's ratio (3.3 × 10-4) and a near-zero thermal expansion coefficient (1.2 × 10-7 per degree Celsius), which ensures excellent structural flexibility and thermomechanical properties. They show high thermal stability with ultralow strength degradation (less than 1 per cent) after sharp thermal shocks, and a high working temperature (up to 1,300 degrees Celsius). By deliberately entrapping residue carbon species in the constituent hypocrystalline zircon fibres, we substantially reduce the thermal radiation heat transfer and achieve one of the lowest high-temperature thermal conductivities among ceramic aerogels so far-104 milliwatts per metre per kelvin at 1,000 degrees Celsius. The combined thermomechanical and thermal insulating properties offer an attractive material system for robust thermal insulation under extreme conditions.
RESUMEN
An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.
Asunto(s)
Tolerancia al Ejercicio/fisiología , Ganglios Espinales/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Neuronas Aferentes/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Reflejo Anormal , Vías Aferentes , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Insuficiencia Cardíaca/metabolismo , Canal de Potasio Kv1.4/metabolismo , Masculino , Músculo Esquelético/inervación , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reflejo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Canales de Potasio Shaw/metabolismoRESUMEN
An increasing number of studies have found that use of traditional anesthetics may lead to cognitive impairment of the immature brain. Our previous studies verified that cyclin-dependent kinase 5 (CDK5) plays a role in sevoflurane-induced cognitive dysfunction. Autophagy was shown to protect against anesthesia-induced nerve injury. Therefore, the current study aimed to ascertain if autophagy participates in anesthesia-induced neurotoxicity. In this study, primary hippocampal neurons were isolated and utilized for experiments in vitro. We also performed in vivo experiments with 6-day-old wild-type mice treated with or without roscovitine (Rosc, a CDK5 inhibitor) or 3-methyladenine (3-Ma, an autophagy inhibitor) after exposure to sevoflurane. We used the Morris water maze to analyze cognitive function. Immunohistochemical staining was used to assess pathologic changes in the hippocampus. The results showed that suppressing CDK5 reversed sevoflurane-induced nerve cell apoptosis both in vivo and in vitro and demonstrated that inhibits CDK5 activation promoted Sirtuin 1 (Sirt1) expression, which functions importantly in induced autophagy activation. Suppression of Sirt1 expression inhibited the protective effect of Rosc on sevoflurane-induced nerve injury by inhibiting autophagy activation. Our in vivo experiments also found that pretreatment with 3-Ma attenuated the protective effect of Rosc on sevoflurane-induced nerve injury and cognitive dysfunction. We conclude that inhibits CDK5 activation restored sevoflurane-induced cognitive dysfunction by promoting Sirt1-mediated autophagy.
Asunto(s)
Autofagia , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo , Sevoflurano/efectos adversos , Sirtuina 1/metabolismo , Animales , Apoptosis , Células Cultivadas , Disfunción Cognitiva/patología , Activación Enzimática , Hipocampo/patología , Masculino , Ratones , ProteolisisRESUMEN
Enhanced sampling molecular dynamics (MD) simulations have been extensively used in the phase transition study of simple crystalline materials, such as aluminum, silica, and ice. However, MD simulation of the crystallization process for complex crystalline materials still faces a formidable challenge due to their multicomponent induced multiphase problem. Here, we realize the ab initio accuracy MD crystallization simulations of complex ceramics by using anisotropic collective variables (CVs) and machine learning (ML) potential. The anisotropic X-ray diffraction intensity CVs provide precise identification of complex crystal structures with detailed crystallography information, while the ML potential makes it feasible to further perform enhanced sampling simulations with ab initio accuracy. We verify the universality and accuracy of this method through complex ceramics with three kinds of representative structures, i.e., Ti3SiC2 for the MAX structure, zircon for the mineral structure, and lead zirconate titanate for the perovskite structure. It demonstrates exceptional efficiency and ab initio quality in achieving crystallization and generating free energy surfaces of all these ceramics, facilitating the analysis and design of complex crystalline materials.
RESUMEN
Inorganic aerogels have exhibited many superior characteristics with extensive applications, but are still plagued by a nearly century-old tradeoff between their mechanical and thermal properties. When reducing thermal conductivity by ultralow density, inorganic aerogels generally suffer from large fragility due to their brittle nature or weak joint crosslinking, while enhancing the mechanical robustness by material design and structural engineering, they easily sacrifice thermal insulation and stability. Here, we report a chemically bonded multi-nanolayer design and synthesis of a graphene/amorphous boron nitride aerogel to address this typical tradeoff to further enhance mechanical and thermal properties. Attributed to the chemically bonded interface and coupled toughening effect, our aerogels display a low density of 0.8 mg cm-3 with ultrahigh flexibility (elastic compressive strain up to 99% and bending strain up to 90%), and exceptional thermostability (strength degradation <3% after sharp thermal shocks), as well as the lowest thermal conductivities in a vacuum (only 1.57 mW m-1 K-1 at room temperature and 10.39 mW m-1 K-1 at 500°C) among solid materials to date. This unique combination of mechanical and thermal properties offers an attractive material system for thermal superinsulation at extreme conditions.
RESUMEN
Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from Evodiae Fructus (EF, Wuzhuyu in Chinese, Rutaceae family), a well-known traditional Chinese medicine (TCM) which is clinically applied to treat headache, abdominal pain, menstrual pain, abdominal distension, vomiting, acid regurgitation, etc. Modern research demonstrates that DHE is one of the main components of EF. In recent years, DHE has received extensive attention due to its various pharmacological activities. This review is the first to comprehensively summarize the current studies on pharmacokinetics profiles, pharmacological properties, and toxicological risks of DHE in diverse diseases. Pharmacokinetic studies have shown that DHE has a relatively good oral absorption effect in the mean concentration curves in rat plasma and high absorption in the gastrointestinal tract. In addition, distribution re-absorption and enterohepatic circulation may lead to multiple blood concentration peaks of DHE in rat plasma. DHE possesses a wide spectrum of pharmacological properties in the central nervous system, cardiovascular system, and digestive system. Moreover, DHE has anti-inflammatory effects via downregulating pro-inflammatory cytokines and inflammatory mediators. Given the favorable pharmacological activity, DHE is expected to be a potential drug candidate for the treatment of Alzheimer's disease, chronic stress, amnesia, chronic atrophic gastritis, gastric ulcers, and rheumatoid arthritis. In addition, toxicity studies have suggested that DHE has proarrhythmic effects and can impair bile acid homeostasis without causing hepatotoxicity. However, further rigorous and well-designed studies are needed to elucidate the pharmacokinetics, pharmacological effects, potential biological mechanisms, and toxicity of DHE.
RESUMEN
Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g-1. The studies to date have been limited to electrodes with a relatively low mass loading (< 3.5 mg cm-2), which has seriously restricted the areal capacity and its potential in practical devices. Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practical technologies. Herein, we report a monolithic three-dimensional (3D) large-sheet holey graphene framework/SiO (LHGF/SiO) composite for high-mass-loading electrode. By specifically using large-sheet holey graphene building blocks, we construct LHGF with super-elasticity and exceptional mechanical robustness, which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading. Additionally, the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport. By systematically tailoring microstructure design, we show the LHGF/SiO anode with a mass loading of 44 mg cm-2 delivers a high areal capacity of 35.4 mAh cm-2 at a current of 8.8 mA cm-2 and retains a capacity of 10.6 mAh cm-2 at 17.6 mA cm-2, greatly exceeding those of the state-of-the-art commercial or research devices. Furthermore, we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm-2 delivers an unprecedented areal capacity up to 140.8 mAh cm-2. The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.
RESUMEN
Psoraleae Fructus (PF) is a well-known traditional herbal medicine in China, and it is widely used for osteoporosis, vitiligo, and other diseases in clinical settings. However, liver injury caused by PF and its preparations has been frequently reported in recent years. Our previous studies have demonstrated that PF could cause idiosyncratic drug-induced liver injury (IDILI), but the mechanism underlying its hepatotoxicity remains unclear. This paper reports that bavachin isolated from PF enhances the specific stimuli-induced activation of the NLRP3 inflammasome and leads to hepatotoxicity. Bavachin boosts the secretion of IL-1ß and caspase-1 caused by ATP or nigericin but not those induced by poly(I:C), monosodium urate crystal, or intracellular lipopolysaccharide. Bavachin does not affect AIM2 or NLRC4 inflammasome activation. Mechanistically, bavachin specifically increases the production of nigericin-induced mitochondrial reactive oxygen species among the most important upstream events in the activation of the NLRP3 inflammasome. Bavachin increases the levels of aspartate transaminase and alanine aminotransferase in serum and hepatocyte injury accompanied by the secretion of IL-1ß via a mouse model of lipopolysaccharide-mediated susceptibility to IDILI. These results suggest that bavachin specifically enhances the ATP- or nigericin-induced activation of the NLRP3 inflammasome. Bavachin also potentially contributes to PF-induced idiosyncratic hepatotoxicity. Moreover, bavachin and PF should be evaded among patients with diseases linked to the ATP- or nigericin-mediated activation of the NLRP3 inflammasome, which may be a dangerous factor for liver injury.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Inflamasomas , Adenosina Trifosfato , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Flavonoides , Humanos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , NigericinaRESUMEN
Aberrant activation of NLRP3 inflammasome has been implicated in a variety of human inflammatory diseases, but currently, no pharmacological NLRP3 inhibitor has been approved. In this study, we showed that echinatin, the ingredient of the traditional herbal medicine licorice, effectively suppresses the activation of NLRP3 inflammasome in vitro and in vivo. Further investigation revealed that echinatin exerts its inhibitory effect on NLRP3 inflammasome by binding to heat-shock protein 90 (HSP90), inhibiting its ATPase activity and disrupting the association between the cochaperone SGT1 and HSP90-NLRP3. Importantly, in vivo experiments demonstrated that administration of echinatin obviously inhibits NLRP3 inflammasome activation and ameliorates LPS-induced septic shock and dextran sodium sulfate-induced (DSS-induced) colitis in mice. Moreover, echinatin exerted favorable pharmacological effects on liver inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis (NASH). Collectively, our study identifies echinatin as a potentially novel inhibitor of NLRP3 inflammasome, and its use may be developed as a therapeutic approach for the treatment of NLRP3-driven diseases.
Asunto(s)
Chalconas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Colitis/tratamiento farmacológico , Colitis/etiología , Modelos Animales de Enfermedad , Femenino , Glycyrrhiza/química , Proteínas HSP90 de Choque Térmico/inmunología , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Técnicas In Vitro , Inflamasomas/inmunología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Sustancias Protectoras/farmacología , Choque Séptico/inducido químicamente , Choque Séptico/prevención & controlRESUMEN
[This corrects the article DOI: 10.1016/j.apsb.2019.02.003.].
RESUMEN
Aberrant activation of inflammasomes, a group of protein complexes, is pathogenic in a variety of metabolic and inflammation-related diseases. Here, we report that carnosol inhibits NLRP3 inflammasome activation by directly targeting heat-shock protein 90 (HSP90), which is essential for NLRP3 inflammasome activity, thereby treating inflammasome-mediated diseases. Our data demonstrate that carnosol inhibits NLRP3 inflammasome activation in primary mouse bone marrow-derived macrophages (BMDMs), THP-1 cells and human peripheral blood mononuclear cells (hPBMCs). Mechanistically, carnosol inhibits inflammasome activation by binding to HSP90 and then inhibiting its ATPase activity. In vivo, our results show that carnosol has remarkable therapeutic effects in mouse models of NLRP3 inflammasome-mediated diseases, including endotoxemia and nonalcoholic steatohepatitis (NASH). Our data also suggest that intraperitoneal administration of carnosol (120 mg/kg) once daily for two weeks is well tolerated in mice. Thus, our study reveals the inhibitory effect of carnosol on inflammasome activation and demonstrates that carnosol is a safe and effective candidate for the treatment of inflammasome-mediated diseases.
Asunto(s)
Abietanos/farmacología , Proteínas HSP90 de Choque Térmico/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismoRESUMEN
Aberrant activation of NLRP3 inflammasome has been implicated in the pathogenesis of diverse inflammation-related diseases, and pharmacological molecules targeting NLRP3 inflammasome are of considerable value to identifying potential therapeutic interventions. Cardamonin (CDN), the major active ingredient of the traditional Chinese medicinal herb Alpinia katsumadai, has exerted an excellent anti-inflammatory activity, but the mechanism underlying this role is not fully understood. Here, we show that CDN blocks canonical and noncanonical NLRP3 inflammasome activation triggered by multiple stimuli. Moreover, the suppression of CDN on inflammasome activation is specific to NLRP3, not to NLRC4 or AIM2 inflammasome. Besides, the inhibitory effect is not dependent on the expression of NF-κB-mediated inflammasome precursor proteins. We also demonstrate that CDN suppresses the NLRP3 inflammasome through blocking ASC oligomerization and speckle formation in a dose-dependent manner. Importantly, CDN improves the survival of mice suffering from lethal septic shock and attenuates IL-1ß production induced by LPS in vivo, which is shown to be NLRP3 dependent. In conclusion, our results identify CDN as a broad-spectrum and specific inhibitor of NLRP3 inflammasome and a candidate therapeutic drug for treating NLRP3 inflammasome-driven diseases.
RESUMEN
BACKGROUND: The exact pathogenic mechanism of ankylosing spondylitis (AS) is still unclear. OBJECTIVE: we aimed to screen key genes associated with AS using differential expression network (DEN), and further to reveal the molecular mechanism of AS. MATERIALS AND METHODS: First, the gene expression data of AS were recruited and preprocessed. Meanwhile, differentially expressed genes (DEGs) were identified. Then, the DEN including the differential interactions and the nondifferential interactions were constructed, and the hub genes were determined according to degree centrality analysis of nodes. Finally, pathway enrichment analysis was conducted on these genes contained in the DEN to further to determine the importance of the hub genes. RESULTS: A total of 20,102 genes were obtained and 145 DEGs which including 99 upregulated genes and 46 downregulated genes were identified. Then, a DEN which contained 434 differential interactions and 2 nondifferential interactions were constructed. In the following, four hub genes which were USP7, hepatoma-derived growth factor, EP300, and split hand/foot malformation type 1 (SHFM1) were screened out. None of them was DEGs. Finally, the hub genes of EP300 and SHFM1 were enriched in the pathways of prostate cancer and adherens junction and proteasome pathway, respectively. CONCLUSIONS: Compared to the traditional differential genes methods, DEN is a more useful and comprehensive method to conduct on the AS. We predict that these genes (such as EP300 and SHFM1) could be chosen as novel predictive markers for AS.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Espondilitis Anquilosante/genética , Transcriptoma , Biología Computacional/métodos , Epistasis Genética , Ontología de Genes , HumanosRESUMEN
Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In our previous study, we enhanced sperm chromatin remodeling within the bovine sperm injection-derived androgenentic (SpI-AG) embryos by sperm pretreatment, and thereby improved their early developmental competence. In this study, we found that blastocyst development of SpI-AG embryos could be elevated by the histone deacetylase inhibitor (HDACi). First, we optimized the efficacy of two histone deacetylase inhibitors [trichostatin A (TSA) and Scriptaid (SCR)] in a dose (0, 5, 10, 20, 50, and 100 nM for TSA; 0, 50, 100, 200, 300, and 500 nM for SCR, respectively) and time-dependent (0, 10, 15, 20, and 25 h) manner on the developmental capacity of these embryos. Furthermore, we quantitatively assessed the alterations in histone H3 and H4 overall acetylation levels and blastocyst quality of SpI-AG embryos by immunofluorescence staining. We found a significantly improved morula and blastocyst development rate of SpI-AG embryos at a mild dose of TSA (20 nM) or SCR (200 nM) for 15 h after embryo activation. Furthermore, both HDACi noticeably increased the levels of acetylated histone H3 and H4 in SpI-AG blastocyst embryos, whereas, SCR treatment improved the quality of blastocysts when compared with control group. In conclusion, HDACi is beneficial for early development of bovine SpI-AG embryos and can be used to improve the efficiency of its in vitro production.