Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Semin Cell Dev Biol ; 139: 3-12, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35918217

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Trastornos del Conocimiento/patología , Factores de Riesgo
2.
Cell ; 141(5): 846-58, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510931

RESUMEN

Polarized trafficking of synaptic proteins to axons and dendrites is crucial to neuronal function. Through forward genetic analysis in C. elegans, we identified a cyclin (CYY-1) and a cyclin-dependent Pctaire kinase (PCT-1) necessary for targeting presynaptic components to the axon. Another cyclin-dependent kinase, CDK-5, and its activator p35, act in parallel to and partially redundantly with the CYY-1/PCT-1 pathway. Synaptic vesicles and active zone proteins mostly mislocalize to dendrites in animals defective for both PCT-1 and CDK-5 pathways. Unlike the kinesin-3 motor, unc-104/Kif1a mutant, cyy-1 cdk-5 double mutants have no reduction in anterogradely moving synaptic vesicle precursors (SVPs) as observed by dynamic imaging. Instead, the number of retrogradely moving SVPs is dramatically increased. Furthermore, this mislocalization defect is suppressed by disrupting the retrograde motor, the cytoplasmic dynein complex. Thus, PCT-1 and CDK-5 pathways direct polarized trafficking of presynaptic components by inhibiting dynein-mediated retrograde transport and setting the balance between anterograde and retrograde motors.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Sinapsis/metabolismo , Animales , Axones , Caenorhabditis elegans , Ciclinas/metabolismo , Cinesinas/metabolismo , Neuronas , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443211

RESUMEN

Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.


Asunto(s)
Astrocitos/metabolismo , Región CA1 Hipocampal/metabolismo , Interleucina-33/metabolismo , Plasticidad Neuronal , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Homeostasis , Interleucina-33/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/genética , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
4.
Proc Natl Acad Sci U S A ; 113(19): E2705-13, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091974

RESUMEN

Alzheimer's disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of ß-amyloid (Aß) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aß levels and amyloid plaque deposition by promoting the recruitment and Aß phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1ß, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , Interleucina-33/administración & dosificación , Enfermedad de Alzheimer/diagnóstico , Animales , Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/diagnóstico , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/administración & dosificación , Resultado del Tratamiento
5.
Proc Natl Acad Sci U S A ; 111(27): 9959-64, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958880

RESUMEN

Alzheimer's disease (AD), characterized by cognitive decline, has emerged as a disease of synaptic failure. The present study reveals an unanticipated role of erythropoietin-producing hepatocellular A4 (EphA4) in mediating hippocampal synaptic dysfunctions in AD and demonstrates that blockade of the ligand-binding domain of EphA4 reverses synaptic impairment in AD mouse models. Enhanced EphA4 signaling was observed in the hippocampus of amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD, whereas soluble amyloid-ß oligomers (Aß), which contribute to synaptic loss in AD, induced EphA4 activation in rat hippocampal slices. EphA4 depletion in the CA1 region or interference with EphA4 function reversed the suppression of hippocampal long-term potentiation in APP/PS1 transgenic mice, suggesting that the postsynaptic EphA4 is responsible for mediating synaptic plasticity impairment in AD. Importantly, we identified a small-molecule rhynchophylline as a novel EphA4 inhibitor based on molecular docking studies. Rhynchophylline effectively blocked the EphA4-dependent signaling in hippocampal neurons, and oral administration of rhynchophylline reduced the EphA4 activity effectively in the hippocampus of APP/PS1 transgenic mice. More importantly, rhynchophylline administration restored the impaired long-term potentiation in transgenic mouse models of AD. These findings reveal a previously unidentified role of EphA4 in mediating AD-associated synaptic dysfunctions, suggesting that it is a new therapeutic target for this disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Receptor EphA4/metabolismo , Sinapsis/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Receptor EphA4/genética , Sinapsis/metabolismo
6.
J Neurosci ; 33(2): 464-72, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303927

RESUMEN

Learning and memory require orchestrated regulation of both structural and functional synaptic plasticity in the hippocampus. While a neuropeptide alpha-melanocyte-stimulating hormone, α-MSH, has been implicated in memory acquisition and retention, the functional role of its cognate receptor, melanocortin-4 receptor (MC4R), in hippocampal-dependent synaptic plasticity has not been explored. In this study, we report that activation of MC4R enhances synaptic plasticity through the regulation of dendritic spine morphology and abundance of AMPA receptors. We show that activation of postsynaptic MC4R increases the number of mature dendritic spines and enhances surface expression of AMPA receptor subunit GluA1, resulting in synaptic accumulation of GluA1-containing AMPA receptors. Moreover, MC4R stimulates surface GluA1 trafficking through phosphorylation of GluA1 at Ser845 in a Gα(s)-cAMP/PKA-dependent manner. Blockade of protein kinase A (PKA) signaling abolishes the MC4R-mediated enhancement of neurotransmission and hippocampal long-term potentiation. Importantly, in vivo application of MC4R agonists increases LTP in the mouse hippocampal CA1 region. These findings reveal that MC4R in the hippocampus plays a critical role in the regulation of structural and functional plasticity.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Receptor de Melanocortina Tipo 4/fisiología , Sinapsis/fisiología , Animales , Biotinilación , Western Blotting , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Cartilla de ADN , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores AMPA/fisiología , Técnicas Estereotáxicas , Transmisión Sináptica/fisiología
7.
J Neurosci ; 32(24): 8263-9, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22699907

RESUMEN

Dendrites are the primary sites on neurons for receiving and integrating inputs from their presynaptic partners. Defects in dendrite development perturb the formation of neural circuitry and impair information processing in the brain. Extracellular cues are important for shaping the dendritic morphogenesis, but the underlying molecular mechanisms are not well understood. In this study, we examined the role of ARMS (ankyrin repeat-rich membrane spanning protein), also known as Kidins220 (kinase D-interacting substrate of 220 kDa), previously identified as a downstream target of neurotrophin and ephrin receptors, in dendrite development. We report here that knockdown of ARMS/Kidins220 by in utero electroporation impairs dendritic branching in mouse cerebral cortex, and silencing of ARMS/Kidins220 in primary rat hippocampal neurons results in a significant decrease in the length, number, and complexity of the dendritic arbors. Overexpression of cell surface receptor tyrosine kinases, including TrkB and EphB2, in ARMS/Kidins220-deficient neurons can partially rescue the defective dendritic phenotype. More importantly, we show that PI3K (phosphoinositide-3-kinase)- and Akt-mediated signaling pathway is crucial for ARMS/Kidins220-dependent dendrite development. Furthermore, loss of ARMS/Kidins220 significantly reduced the clustering of EphB2 receptor signaling complex in neurons. Our results collectively suggest that ARMS/Kidins220 is a key player in organizing the signaling complex to transduce the extracellular stimuli to cellular responses during dendrite development.


Asunto(s)
Proteínas de la Membrana/fisiología , Fosfoproteínas/fisiología , Receptor trkB/fisiología , Receptores de la Familia Eph/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Dendritas/metabolismo , Dendritas/fisiología , Femenino , Técnicas de Silenciamiento del Gen/métodos , Hipocampo/citología , Hipocampo/fisiología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Neurogénesis/fisiología , Fosfoproteínas/genética , Cultivo Primario de Células , Ratas , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Transducción de Señal/fisiología
8.
Neurosignals ; 21(1-2): 55-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22398430

RESUMEN

Cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, is critical for regulating neural development and neuronal survival. Dysregulation of Cdk5 is associated with abnormal expression of cell cycle-related proteins during neuronal apoptosis. We have previously found that p35, a Cdk5 activator, interacts with mSds3, an integral component of the histone deacetylase complex in vitro, suggesting a functional role of Cdk5 in gene regulation through modulation of chromatin integrity. In this study, we further demonstrate that Cdk5-dependent phosphorylation of mSds3 at Ser228 occurs in mouse brain nuclei. The expression of mSds3 protein and its interaction with Cdk5 activators is developmentally regulated in the mouse brain. Importantly, our findings suggest that the ability of Cdk5 to regulate activity deprivation-induced apoptosis of cerebellar granule neurons is likely mediated by the regulation of histone acetylation. Suppression of Cdk5 not only attenuates the induction of histone H3 acetylation and the aberrant upregulation of cyclin proteins in neurons after activity deprivation, but also results in protection of neurons against apoptotic cell death. Taken together, our findings suggest that Cdk5 regulates neuronal survival by precise epigenetic control through modulation of histone acetylation.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Neuronas/metabolismo , Acetilación , Animales , Muerte Celular/fisiología , Células Cultivadas , Cerebelo/metabolismo , Células HEK293 , Humanos , Ratones , Fosforilación/fisiología
9.
Neuron ; 111(20): 3133-3135, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37857086

RESUMEN

In this issue of Neuron, Essayan-Perez and Südhof1 demonstrate roles for γ-secretase in the regulation of synaptic functions in human neurons. Chronic attenuation of γ-secretase activity increases synapse formation but decreases neurotransmission (i.e., the probability of presynaptic release), likely due to impairment of cholesterol metabolism.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Neuronas , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Homeostasis , Colesterol/metabolismo , Sinapsis/metabolismo
10.
Nat Aging ; 2(7): 616-634, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-37117777

RESUMEN

Changes in the levels of circulating proteins are associated with Alzheimer's disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33-ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR-Cas9 genome editing identified rs1921622 , a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622 , demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622 /sST2 regulates amyloid-beta (Aß) pathology through the modulation of microglial activation and Aß clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Animales , Ratones , Enfermedad de Alzheimer/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Estudio de Asociación del Genoma Completo , Apolipoproteína E4/genética , Péptidos beta-Amiloides/genética
11.
J Neurosci ; 30(43): 14366-70, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20980593

RESUMEN

Precise regulation of cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, is critical for proper neuronal development and functions. Cdk5 is activated through its association with the neuron-specific activator p35 or p39. Nonetheless, how its kinase activity is regulated in neurons is not well understood. In this study, we found that Cdk5 activity is regulated by S-nitrosylation, a post-translational modification of protein that affects a plethora of neuronal functions. S-nitrosylation of Cdk5 occurs at Cys83, which is one of the critical amino acids within the ATP-binding pocket of the kinase. Upon S-nitrosylation, Cdk5 exhibits reduced kinase activity, whereas mutation of Cys83 to Ala on Cdk5 renders the kinase refractory to such inhibition. Importantly, S-nitrosylated Cdk5 can be detected in the mouse brain, and blocking the S-nitrosylation of Cdk5 in cultured hippocampal neurons enhances dendritic growth and branching. Together, our findings reveal an important role of S-nitrosylation in regulating Cdk5 kinase activity and dendrite growth in neurons during development.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/fisiología , Dendritas/fisiología , Neuronas/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Animales , Biotina , Química Encefálica/fisiología , Células Cultivadas , Cisteína/fisiología , ADN Complementario/genética , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Humanos , Ratones , Compuestos Nitrosos/química , Proteínas Recombinantes de Fusión , Transfección
12.
Nat Neurosci ; 10(1): 67-76, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17143272

RESUMEN

The development of dendritic spines is thought to be crucial for synaptic plasticity. Dendritic spines are retracted upon Eph receptor A4 (EphA4) activation, but the mechanisms that control this process are not well understood. Here we report an important function of cyclin-dependent kinase 5 (Cdk5) in EphA4-dependent spine retraction in mice. We found that blocking Cdk5 activity inhibits ephrin-A1-triggered spine retraction and reduction of mEPSC frequency at hippocampal synapses. The activation of EphA4 resulted in the recruitment of Cdk5 to EphA4, leading to the tyrosine phosphorylation and activation of Cdk5. EphA4 and Cdk5 then enhanced the activation of ephexin1, a guanine-nucleotide exchange factor that regulates activation of the small Rho GTPase RhoA. The association between EphA4 and ephexin1 was significantly reduced in Cdk5(-/-) brains and Cdk5-dependent phosphorylation of ephexin1 was required for the ephrin-A1-mediated regulation of spine density. These findings suggest that ephrin-A1 promotes EphA4-dependent spine retraction through the activation of Cdk5 and ephexin1, which in turn modulates actin cytoskeletal dynamics.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/fisiología , Espinas Dendríticas/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Receptor EphA4/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/deficiencia , Espinas Dendríticas/efectos de los fármacos , Embrión de Mamíferos , Activación Enzimática , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Técnicas de Placa-Clamp/métodos , Fosforilación , Receptor EphA1/genética , Receptor EphA1/metabolismo , Transfección/métodos , Tirosina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
13.
Sci Rep ; 11(1): 4359, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623128

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no disease-modifying treatment. AD progression is characterized by cognitive decline, neuroinflammation, and accumulation of amyloid-beta (Aß) and neurofibrillary tangles in the brain, leading to neuronal and glial dysfunctions. Neuropeptides govern diverse pathophysiological processes and represent key players in AD pathogenesis, regulating synaptic plasticity, glial cell functions and amyloid pathology. Activation of the pro-opiomelanocortin (POMC)-derived neuropeptide and its receptor from the melanocortin receptor (MCR) family have previously been shown to rescue the impairment in hippocampus-dependent synaptic plasticity in the APP/PS1 mouse model of AD. However, the functional roles of MCR signaling in AD conditions, particularly in glial functions, are largely unknown. In this study, we investigated the potential benefits of MCR activation in AD. In APP/PS1 transgenic mice, we demonstrate that MCR activation mediated by the central administration of its agonist D-Tyr MTII substantially reduces Aß accumulation, while alleviating global inflammation and astrocytic activation, particularly in the hippocampus. MCR activation prominently reduces the A1 subtype of reactive astrocytes, which is considered a key source of astrocytic neurotoxicity in AD. Concordantly, MCR activation suppresses microglial activation, while enhancing their association with amyloid plaques. The blunted activation of microglia may contribute to the reduction in the neurotoxic phenotypes of astrocytes. Importantly, transcriptome analysis reveals that MCR activation restores the impaired homeostatic processes and microglial reactivity in the hippocampus in APP/PS1 mice. Collectively, our findings demonstrate the potential of MCR signaling as therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Astrocitos/metabolismo , Receptores de Melanocortina/agonistas , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Péptidos Cíclicos/química , Receptores de Melanocortina/metabolismo , Tirosina/análogos & derivados , alfa-MSH/análogos & derivados , alfa-MSH/química
14.
ACS Chem Neurosci ; 12(22): 4249-4256, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34738783

RESUMEN

Alzheimer's disease (AD), the most common neurodegenerative disease, has limited treatment options. As such, extensive studies have been conducted to identify novel therapeutic approaches. We previously reported that rhynchophylline (Rhy), a small molecule EphA4 inhibitor, rescues impaired hippocampal synaptic plasticity and cognitive dysfunctions in APP/PS1 mice, an AD transgenic mouse model. To assess whether Rhy can be developed as an alternative treatment for AD, it is important to examine its pharmacokinetics and effects on other disease-associated pathologies. Here, we show that Rhy ameliorates amyloid plaque burden and reduces inflammation in APP/PS1 mice. Transcriptome analysis revealed that Rhy regulates various molecular pathways in APP/PS1 mouse brains associated with amyloid metabolism and inflammation, specifically the ubiquitin proteasome system, angiogenesis, and microglial functional states. These results show that Rhy, which is blood-brain barrier permeable, is beneficial to amyloid pathology and regulates multiple molecular pathways.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxindoles , Placa Amiloide/tratamiento farmacológico , Presenilina-1/genética
15.
Sci Rep ; 10(1): 18746, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127972

RESUMEN

Dendrites, branched structures extending from neuronal cell soma, are specialized for processing information from other neurons. The morphogenesis of dendritic structures is spatiotemporally regulated by well-orchestrated signaling cascades. Dysregulation of these processes impacts the wiring of neuronal circuit and efficacy of neurotransmission, which contribute to the pathogeneses of neurological disorders. While Cdk5 (cyclin-dependent kinase 5) plays a critical role in neuronal dendritic development, its underlying molecular control is not fully understood. In this study, we show that p39, one of the two neuronal Cdk5 activators, is a key regulator of dendritic morphogenesis. Pyramidal neurons deficient in p39 exhibit aberrant dendritic morphology characterized by shorter length and reduced arborization, which is comparable to dendrites in Cdk5-deficient neurons. RNA sequencing analysis shows that the adaptor protein, WDFY1 (WD repeat and FYVE domain-containing 1), acts downstream of Cdk5/p39 to regulate dendritic morphogenesis. While WDFY1 is elevated in p39-deficient neurons, suppressing its expression rescues the impaired dendritic arborization. Further phosphoproteomic analysis suggests that Cdk5/p39 mediates dendritic morphogenesis by modulating various downstream signaling pathways, including PI3K/Akt-, cAMP-, or small GTPase-mediated signaling transduction pathways, thereby regulating cytoskeletal organization, protein synthesis, and protein trafficking.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dendritas/metabolismo , Proteínas Ligadas a Lípidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , AMP Cíclico/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Proteínas Ligadas a Lípidos/genética , Espectrometría de Masas , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Morfogénesis/genética , Morfogénesis/fisiología , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
16.
Cell Rep ; 31(3): 107530, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320664

RESUMEN

Impairment of microglial clearance activity contributes to beta-amyloid (Aß) pathology in Alzheimer's disease (AD). While the transcriptome profile of microglia directs microglial functions, how the microglial transcriptome can be regulated to alleviate AD pathology is largely unknown. Here, we show that injection of interleukin (IL)-33 in an AD transgenic mouse model ameliorates Aß pathology by reprogramming microglial epigenetic and transcriptomic profiles to induce a microglial subpopulation with enhanced phagocytic activity. These IL-33-responsive microglia (IL-33RMs) express a distinct transcriptome signature that is highlighted by increased major histocompatibility complex class II genes and restored homeostatic signature genes. IL-33-induced remodeling of chromatin accessibility and PU.1 transcription factor binding at the signature genes of IL-33RM control their transcriptome reprogramming. Specifically, disrupting PU.1-DNA interaction abolishes the microglial state transition and Aß clearance that is induced by IL-33. Thus, we define a PU.1-dependent transcriptional pathway that drives the IL-33-induced functional state transition of microglia, resulting in enhanced Aß clearance.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Interleucina-33/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-33/genética , Masculino , Ratones , Ratones Transgénicos , Microglía/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/farmacología , Transactivadores/metabolismo , Transcriptoma/efectos de los fármacos
17.
J Neurosci ; 28(36): 9002-12, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-18768694

RESUMEN

Neurotrophins and their cognate receptors Trks are important regulators of neuronal survival and differentiation. Recent studies reveal that internalization and trafficking of Trks play a critical role in neurotrophin-mediated signaling. At present, little is known of the molecular events that mediate this process. In the current study, we show that endophilin B1 is a novel regulator of nerve growth factor (NGF) trafficking. We found that endophilin B1 interacts with both TrkA and early endosome marker EEA1. Interestingly, knockdown of endophilin B1 results in enlarged EEA1-positive vesicles in NGF-treated PC12 cells. This is accompanied by increased lysosomal targeting of NGF/TrkA and TrkA degradation, and reduced total TrkA levels. In addition, knockdown of endophilin B1 attenuates Erk1/2 activation in the endosomal fraction after NGF treatment. This is accompanied by a marked inhibition of NGF-induced gene transcription and neurite outgrowth in endophilin B1-knocked down cells. Our observations implicate endophilin B1 as a novel regulator of NGF trafficking, thereby affecting TrkA levels and downstream signaling on endosomes to mediate biological functions of NGF.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Neuritas/fisiología , Neuronas/citología , Receptor trkA/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Biotinilación/métodos , Células Cultivadas , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/farmacología , Ratas , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transfección/métodos , Proteínas de Transporte Vesicular/metabolismo
18.
ACS Chem Neurosci ; 10(2): 872-879, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30221933

RESUMEN

Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase owing to the aging population worldwide. Current therapies merely provide symptomatic relief. Therefore, interventions for AD that delay the disease onset or progression are urgently required. Recent genomics and functional studies suggest that immune/inflammatory pathways are involved in the pathogenesis of AD. Although many anti-inflammatory drug candidates have undergone clinical trials, most have failed. This might be because of our limited understanding of the pathological mechanisms of neuroinflammation in AD. However, recent advances in the understanding of immune/inflammatory pathways in AD and their regulatory mechanisms could open up new avenues for drug development targeting neuroinflammation. In this Review, we discuss the mechanisms and status of different anti-inflammatory drug candidates for AD that have undergone or are undergoing clinical trials and explore new opportunities for targeting neuroinflammation in AD drug development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antiinflamatorios/administración & dosificación , Sistemas de Liberación de Medicamentos/tendencias , Descubrimiento de Drogas/tendencias , Mediadores de Inflamación/metabolismo , Enfermedad de Alzheimer/inmunología , Animales , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/inmunología
19.
Sci Rep ; 9(1): 1190, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718786

RESUMEN

Major depressive disorders are emerging health problems that affect millions of people worldwide. However, treatment options and targets for drug development are limited. Impaired adult hippocampal neurogenesis is emerging as a key contributor to the pathology of major depressive disorders. We previously demonstrated that increasing the expression of the multifunctional scaffold protein Axis inhibition protein (Axin) by administration of the small molecule XAV939 enhances embryonic neurogenesis and affects social interaction behaviors. This prompted us to examine whether increasing Axin protein level can enhance adult hippocampal neurogenesis and thus contribute to mood regulation. Here, we report that stabilizing Axin increases adult hippocampal neurogenesis and exerts an antidepressant effect. Specifically, treating adult mice with XAV939 increased the amplification of adult neural progenitor cells and neuron production in the hippocampus under both normal and chronic stress conditions. Furthermore, XAV939 injection in mice ameliorated depression-like behaviors induced by chronic restraint stress. Thus, our study demonstrates that Axin/XAV939 plays an important role in adult hippocampal neurogenesis and provides a potential therapeutic approach for mood-related disorders.


Asunto(s)
Proteína Axina/metabolismo , Depresión/metabolismo , Neurogénesis/efectos de los fármacos , Animales , Antidepresivos/farmacología , Proteína Axina/genética , Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Depresión/patología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/patología , Modelos Animales de Enfermedad , Compuestos Heterocíclicos con 3 Anillos/farmacología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Estrés Psicológico
20.
Sci Rep ; 8(1): 7377, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743517

RESUMEN

The receptor tyrosine kinase, erythropoietin-producing hepatocellular A4 (EphA4), was recently identified as a molecular target for Alzheimer's disease (AD). We found that blockade of the interaction of the receptor and its ligands, ephrins, alleviates the disease phenotype in an AD transgenic mouse model, suggesting that targeting EphA4 is a potential approach for developing AD interventions. In this study, we identified five FDA-approved drugs-ergoloid, cyproheptadine, nilotinib, abiraterone, and retapamulin-as potential inhibitors of EphA4 by using an integrated approach combining virtual screening with biochemical and cellular assays. We initially screened a database of FDA-approved drugs using molecular docking against the ligand-binding domain of EphA4. Then, we selected 22 candidate drugs and examined their inhibitory activity towards EphA4. Among them, five drugs inhibited EphA4 clustering induced by ephrin-A in cultured primary neurons. Specifically, nilotinib, a kinase inhibitor, inhibited the binding of EphA4 and ephrin-A at micromolar scale in a dosage-dependent manner. Furthermore, nilotinib inhibited the activation of EphA4 and EphA4-dependent growth cone collapse in cultured hippocampal neurons, demonstrating that the drug exhibits EphA4 inhibitory activity in cellular context. As demonstrated in our combined computational and experimental approaches, repurposing of FDA-approved drugs to inhibit EphA4 may provide an alternative fast-track approach for identifying and developing new treatments for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Pirimidinas/farmacología , Receptor EphA4/antagonistas & inhibidores , Enfermedad de Alzheimer/metabolismo , Androstenos/metabolismo , Androstenos/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ciproheptadina/metabolismo , Ciproheptadina/farmacología , Modelos Animales de Enfermedad , Diterpenos/metabolismo , Diterpenos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ligandos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Pirimidinas/metabolismo , Receptor EphA4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA