Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(20): e2107997, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35445554

RESUMEN

Direct electrochemical conversion of CO2 to CO product powered by renewable electricity is widely advocated as an emerging strategy for alleviating CO2 emissions while addressing global energy issues. However, the development of low-cost and efficient electrocatalysts with high Faradaic efficiency for CO production (FECO ) and high current density remains a grand challenge. Herein, a robust single nickel atomic site electrocatalyst, which features isolated and dense single atomic NiN3 sites anchored on highly defective hierarchically micro-mesoporous carbon (Ni-SAs/HMMNC-800), to enable enhanced charge transport and more exposed active sites for catalyzing electrochemical CO2 -to-CO conversion, is reported. The Ni-SAs/HMMNC-800 catalyst achieves excellent activity and selectivity with high FECO values of >90% throughout a wide potential range (the FECO reaches 99.5% at -0.7 V vs reversible hydrogen electrode) and a CO partial current density as high as 13.0 mA cm-2 at -0.7 V versus reversible hydrogen electrode, as well as a far outstanding durability during long-term continuous operation, indicating a superior CO2 electroreduction performance than that of other reference samples and most of previously reported carbon-based single atom electrocatalysts. Experimental and density functional theory calculations reveal that atomic NiN3 coordination sites coupled adjacent defects are favorable to significantly enhancing the formation of COOH* reaction intermediates while suppressing the competing hydrogen evolution reaction, thereby enhancing the electrocatalytic activity for CO2 -to-CO reduction. Notably, this work provides a valuable new prospect for designing and synthesizing efficient and cost-effective single atom CO2 electroreduction catalysts for practical applications.

2.
Nano Lett ; 20(8): 6206-6214, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32697097

RESUMEN

Herein, we report efficient single copper atom catalysts that consist of dense atomic Cu sites dispersed on a three-dimensional carbon matrix with highly enhanced mesoporous structures and improved active site accessibility (Cu-SA/NC(meso)). The ratio of +1 to +2 oxidation state of the Cu sites in the Cu-SA/NC(meso) catalysts can be controlled by varying the urea content in the adsorption precursor, and the activity for ORR increases with the addition of Cu1+ sites. The optimal Cu1+-SA/NC(meso)-7 catalyst with highly accessible Cu1+ sites exhibits superior ORR activity in alkaline media with a half-wave potential (E1/2) of 0.898 V vs RHE, significantly exceeding the commercial Pt/C, along with high durability and enhanced methanol tolerance. Control experiments and theoretical calculations demonstrate that the superior ORR catalytic performance of Cu1+-SA/NC(meso)-7 catalyst is attributed to the atomically dispersed Cu1+ sites in catalyzing the reaction and the advantage of the introduced mesoporous structure in enhancing the mass transport.

3.
ACS Appl Mater Interfaces ; 14(6): 8048-8057, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119827

RESUMEN

The resurgence of visible light photocatalysis for carbon dioxide reduction reaction (CO2RR) has resulted in the generation of various homogeneous and heterogeneous paradigms. Herein, a new system has been established by incorporating dual catalytic sites into porous coordination polymer toward the photocatalysis of CO2RR. A functional ligand, 5,10,15,20-tetrakis[4'-(terpyridinyl)phenyl]porphyrin (TTPP), has been used to assemble discrete divalent nickel ions into the coordination polymer (TTPP-Ni) through metal bis(terpyridine) nodes. Both the porphyrin and terpyridine moieties prefer to bind with nickel ions, giving rise to TTPP-Ni with dual active catalytic sites. By controlling different molar ratios of ligand and metal and the reaction temperature, four samples including TTPP-Ni-n (n = 1, 2, 3, and 4) with different molar ratios of nickel porphyrin and nickel bis(terpyridine) subunits have been fabricated. The predesigned two-dimensional chemical structures of TTPP-Ni samples have been fully characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and IR and UV-vis spectroscopies. The photocatalytic activities of these coordination polymers have been screened using [Ru(bpy)3]Cl2·6H2O as a photosensitizer together with triisopropanolamine as the sacrificial electron donor in CH3CN and H2O. Among these photocatalysts, TTPP-Ni-3 and TTPP-Ni-4 with almost saturated metal sites are able to display extraordinary photocatalytic performance including a CO generation rate of ca. 3900 µmol g-1 h-1 and 98% selectivity. The mechanism associated with dual active sites has been rationalized on the basis of theoretical simulations.

4.
Chem Commun (Camb) ; 56(5): 798-801, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31848528

RESUMEN

Catalysts composed of isolated single Fe atoms coordinated to graphitic carbon nitride (g-C3N4) dispersed on hierarchical porous N-doped carbon polyhedra (Fe-g-C3N4/HPNCPs) were successfully prepared. The optimized catalyst, Fe-g-C3N4/HPNCP-0.8, showed excellent electrocatalytic activity for the oxygen reduction reaction under alkaline conditions with a half-wave potential of 0.902 V, significantly outperforming commercial Pt/C, as well as high durability. The high performance stems from the synergistic effect of the atomically dispersed Fe-N2 sites and the advantages of the hierarchical porous structure for promoting mass transport and improving the accessibility of the active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA