Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2402434, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970554

RESUMEN

Exosomes are nanovesicles secreted by cells, which play a crucial role in various pathological processes. Exosomes have shown great promise as tumor biomarkers because of the abundant secretion during tumor formation. The development of a convenient, efficient, and cost-effective method for simultaneously enriching and detecting exosomes is of utmost importance for both basic research and clinical applications. In this study, an aptamer-functionalized magnetic Ti3C2 composite material (Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA) is prepared for the simultaneous enrichment and detection of exosomes. CD63 aptamers are utilized to recognize and capture the exosomes, followed by magnetic separation. The exosomes are then released by cleaving the disulfide bonds of DSP. Compared to traditional methods, Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA exhibited superior efficiency in enriching exosomes while preserving their structural and functional integrity. Detection of exosome concentration is achieved through the fluorescence quenching of Ti3C2 and the competitive binding between the exosomes and a fluorescently labeled probe. This method exhibited a low detection limit of 4.21 × 104 particles mL-1, a number that is comparable to the state-of-the-art method in the detection of exosomes. The present study demonstrates a method of simultaneous enrichment and detection of exosomes with a high sensitivity, accuracy, specificity, and cost-effectiveness providing significant potential for clinical research and diagnosis.

2.
FASEB J ; 37(4): e22844, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906287

RESUMEN

Phosphatases of regenerating liver (PRLs) are dual-specificity protein phosphatases. The aberrant expression of PRLs threatens human health, but their biological functions and pathogenic mechanisms are unclear yet. Herein, the structure and biological functions of PRLs were investigated using the Caenorhabditis elegans (C. elegans). Structurally, this phosphatase in C. elegans, named PRL-1, consisted of a conserved signature sequence WPD loop and a single C(X)5 R domain. Besides, by Western blot, immunohistochemistry and immunofluorescence staining, PRL-1 was proved to mainly express in larval stages and express in intestinal tissues. Afterward, by feeding-based RNA-interference method, knockdown of prl-1 prolonged the lifespan of C. elegans but also improved their healthspan, such as locomotion, pharyngeal pumping frequency, and defecation interval time. Furthermore, the above effects of prl-1 appeared to be taken without acting on germline signaling, diet restriction pathway, insulin/insulin-like growth factor 1 signaling pathway, and SIR-2.1 but through a DAF-16-dependent pathway. Moreover, knockdown of prl-1 induced the nuclear translocation of DAF-16, and upregulated the expression of daf-16, sod-3, mtl-1, and ctl-2. Finally, suppression of prl-1 also reduced the ROS. In conclusion, suppression of prl-1 enhanced the lifespan and survival quality of C. elegans, which provides a theoretical basis for the pathogenesis of PRLs in related human diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Monoéster Fosfórico Hidrolasas , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hígado/metabolismo , Longevidad , Monoéster Fosfórico Hidrolasas/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791474

RESUMEN

Sweetness in food delivers a delightful sensory experience, underscoring the crucial role of sweeteners in the food industry. However, the widespread use of sweeteners has sparked health concerns. This underscores the importance of developing and screening natural, health-conscious sweeteners. Our study represents a groundbreaking venture into the discovery of such sweeteners derived from egg and soy proteins. Employing virtual hydrolysis as a novel technique, our research entailed a comprehensive screening process that evaluated biological activity, solubility, and toxicity of the derived compounds. We harnessed cutting-edge machine learning methodologies, specifically the latest graph neural network models, for predicting the sweetness of molecules. Subsequent refinements were made through molecular docking screenings and molecular dynamics simulations. This meticulous research approach culminated in the identification of three promising sweet peptides: DCY(Asp-Cys-Tyr), GGR(Gly-Gly-Arg), and IGR(Ile-Gly-Arg). Their binding affinity with T1R2/T1R3 was lower than -15 kcal/mol. Using an electronic tongue, we verified the taste profiles of these peptides, with IGR emerging as the most favorable in terms of taste with a sweetness value of 19.29 and bitterness value of 1.71. This study not only reveals the potential of these natural peptides as healthier alternatives to traditional sweeteners in food applications but also demonstrates the successful synergy of computational predictions and experimental validations in the realm of flavor science.


Asunto(s)
Proteínas del Huevo , Simulación del Acoplamiento Molecular , Péptidos , Proteínas de Soja , Edulcorantes , Gusto , Proteínas de Soja/química , Edulcorantes/química , Proteínas del Huevo/química , Proteínas del Huevo/metabolismo , Péptidos/química , Simulación de Dinámica Molecular , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química
4.
J Transl Med ; 21(1): 109, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765396

RESUMEN

BACKGROUND: Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up. METHODS: Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to identify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-protein network, and signaling pathway analyses. RESULTS: The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differentially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were correlated with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. CONCLUSION: The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point of immune homeostasis.


Asunto(s)
Lupus Eritematoso Sistémico , Neoplasias , Humanos , Lupus Eritematoso Sistémico/genética , Quinasas Janus/uso terapéutico , Carcinogénesis , Biología Computacional , ARN Mensajero/metabolismo
5.
Dig Dis Sci ; 68(8): 3283-3292, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335414

RESUMEN

BACKGROUND/AIMS: To explore the protective effects and therapeutic mechanism of Esomeprazole (PPI), polaprezinc granule (PZ), and PPI + PZ on reflux esophagitis (RE) in the rat model. METHODS: Wistar rats were randomly divided into 9 groups, which contain the control group, the acid cessation group (0.7% HCl, Q3D × 4), and the acid persistence group (0.7% HCl, Q3D × 11). PPI was administered by gavage at 8 mg·kg-1 body weight and PZ was administered by gavage at 120 mg·kg-1 body weight once a day for 15 days. The gastric cardia tissue of the feeding tube was observed under the light microscope, and the levels of interleukin-8 (IL-8) and prostaglandin E2 (PGE2) were measured by ELISA. The expression of EGFR, Akt, p-Akt, and p-mTOR was detected by Western blot. RESULTS: The ELISA results showed that the levels of IL-8 and PGE2 were significantly increased in the model group, but decreased in all groups after treatment. In the acid cessation group, PZ treatment had the most significant effect on reducing IL-8 levels and PPI + PZ treatment had the most significant effect on reducing PGE2 levels. In the acid persistence group, the PPI treatment had the most significant effect on reducing the levels of IL-8 and PGE2, and the PZ treatment could also significantly reduce their levels, close to the normal value. Western blot results showed that the expression of PI3K/Akt/mTOR pathway protein was increased in the model group, while its expression was decreased after treatment. CONCLUSIONS: Polaprezinc has a significant therapeutic effect on RE in rats, which can reduce the levels of IL-8 and PGE2 and downregulate the expression of PI3K/Akt/mTOR signal pathway protein. The efficacy of polaprezinc in the treatment of reflux esophagitis is comparable to that of PPI, and the combination of them is more effective in the reflux esophagitis treatment.


Asunto(s)
Esofagitis Péptica , Ratas , Animales , Esofagitis Péptica/tratamiento farmacológico , Interleucina-8 , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Dinoprostona/uso terapéutico , Serina-Treonina Quinasas TOR
6.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674689

RESUMEN

Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos/genética , Tejido Adiposo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Lípidos , Proteínas de Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo
7.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833919

RESUMEN

The disease of SARS-CoV-2 has caused considerable morbidity and mortality globally. Spike proteins on the surface of SARS-CoV-2 allow it to bind with human cells, leading to infection. Fullerenes and their derivatives are promising SARS-CoV-2 inhibitors and drug-delivery vehicles. In this study, Gaussian accelerated molecular dynamics simulations and the Markov state model were employed to delve into the inhibitory mechanism of Fullerene-linear-polyglycerol-b-amine sulfate (F-LGPS) on spike proteins. During the study, it was discovered that fullerene derivatives can operate at the interface of the receptor-binding domain (RBD) and the N-terminal domain (NTD), keeping structural domains in a downward conformation. It was also observed that F-LGPS demonstrated superior inhibitory effects on the XBB variant in comparison to the wild-type variant. This study yielded invaluable insights for the potential development of efficient therapeutics targeting the spike protein of SARS-CoV-2.


Asunto(s)
COVID-19 , Fulerenos , Humanos , SARS-CoV-2 , Fulerenos/farmacología , Glicoproteína de la Espiga del Coronavirus , Simulación de Dinámica Molecular , Unión Proteica
8.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770713

RESUMEN

Chitosanase CsnMY002 is a new type of enzyme isolated from Bacillus subtilis that is used to prepare chitosan oligosaccharide. Although mutants G21R and G21K could increase Chitosan yield and thus increase the commercial value of the final product, the mechanism by which this happens is not known. Herein, we used molecular dynamics simulations to explore the conformational changes in CsnMY002 wild type and mutants when they bind substrates. The binding of substrate changed the conformation of protein, stretching and deforming the active and catalytic region. Additionally, the mutants caused different binding modes and catalysis, resulting in different degrees of polymerization of the final Chitooligosaccharide degradation product. Finally, Arg37, Ile145 ~ Gly148 and Trp204 are important catalytic residues of CsnMY002. Our study provides a basis for the engineering of chitosanases.


Asunto(s)
Quitosano , Quitosano/química , Simulación de Dinámica Molecular , Glicósido Hidrolasas/química , Quitina/metabolismo , Especificidad por Sustrato
9.
Molecules ; 28(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446803

RESUMEN

To explore the anti-hyperuricemia components in sunflower (Helianthus annuus L.) calathide extract (SCE), we identified abietic acid (AA) via liquid chromatography-mass spectrometry and found an excellent inhibitor of xanthine oxidase (IC50 = 10.60 µM, Ki = 193.65 nM) without cytotoxicity. Based on the transcriptomics analysis of the human embryonic kidney 293T cell model established using 1 mM uric acid, we evaluated that AA showed opposite modulation of purine metabolism to the UA group and markedly suppressed the intensity of purine nucleoside phosphorylase, ribose phosphate pyrophosphokinase 2, and ribose 5-phosphate isomerase A. Molecular docking also reveals the inhibition of purine nucleoside phosphorylase and ribose phosphate pyrophosphokinase 1. The SCE exhibits similar regulation of these genes, so we conclude that AA was a promising component in SCE against hyperuricemia. This present study provided a novel cell model for screening anti-hyperuricemia natural drugs in vitro and illustrated that AA, a natural diterpenoid, is a potential inhibitor of purine biosynthesis or metabolism.


Asunto(s)
Helianthus , Hiperuricemia , Humanos , Helianthus/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Simulación del Acoplamiento Molecular , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Células HEK293 , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Riñón/metabolismo , Purinas/metabolismo , Xantina Oxidasa
10.
Mol Cell Biochem ; 477(3): 939-949, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35094193

RESUMEN

Bak is important for TNFα/CHX-induced neuronal death, but the precise molecular mechanism remains unclear. At the same time, TNFα/CHX concomitantly activates the phosphorylation of the MAPK and PI3K/AKT kinases. This study for the first time clarified the association between the MAPK and AKT under the TNFα/CHX stimulation upon addition of different kinase inhibitors to show whether Bak is associated with the kinase activation. The bioinformatics software HDOCK predicted the interaction between Bak and AKT. The addition of TNFα/CHX was proposed to destroy the complex, such that the dissociated Bak would exert a proapoptosis effect AKT can influence the inhibition of cell apoptosis. There was no cell death upon inducing TNFα/CHX for 3 h. AKT was less obvious with apoptosis but in the Bak knockout cells, the anti-apoptotic effect of AKT was very obvious. This study, therefore, provides the theoretical basis for the molecular mechanism of apoptosis induced by TNFα/CHX, providing a new target and direction for studying drug resistance.


Asunto(s)
Apoptosis/efectos de los fármacos , Cicloheximida/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Línea Celular Tumoral , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética
11.
Nanomedicine ; 40: 102507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883265

RESUMEN

One of the most promising treatments for neurodegenerative diseases is the stem cell therapy; however, there are still some limitations in the treatment of Alzheimer's disease. In this study, superparamagnetic nanoparticles composed of magnetic Fe3O4 and polydopamine shells were used to label human umbilical cord mesenchymal stem cells (hUC-MSCs) in order to increase the targeting of hUC-MSCs. Our data suggested that Fe3O4@PDA labeling increase the efficiency of hUC-MSCs entering the brain. Moreover, the water maze test showed that compared with hUC-MSCs only, Fe3O4@PDA-labeled hUC-MSCs improved the cognitive ability of APP/PS1 transgenic mice more significantly. Other experimental data showed that the expression of essential proteins in the hippocampus, such as Aß, synaptophysin, brain-derived neurotrophic factor, are affected by Fe3O4@PDA coated-hUC-MSCs. The regulation of Fe3O4@PDA coated-hUC-MSCs could improve the memory and cognitive ability of AD mice by excessive generation of neuroprotective factors, which might be considered a viable therapy to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanopartículas , Enfermedad de Alzheimer/terapia , Animales , Diferenciación Celular/fisiología , Cognición , Hipocampo , Humanos , Indoles , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Transgénicos , Neurogénesis , Polímeros , Cordón Umbilical
12.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234702

RESUMEN

Ellagic acid is a natural polyphenol found in various fruits and vegetables. Numerous studies have shown that ellagic acid has beneficial effects on human health. In this study, we investigated the stress resistant action of ellagic acid in Caenorhabditis elegans (C. elegans). Notably, 50 µM ellagic acid prolonged the lifespan of C. elegans by 36.25%, 36.22%, 155.1%, and 79.07% under ultraviolet radiation stress, heat stress, oxidative stress, and Pseudomonas aeruginosa infection stress, respectively. Furthermore, the mechanism by which ellagic acid reduces the damage caused by ultraviolet radiation in C. elegans was explored. Ellagic acid could significantly induce the nucleus translocation of DAF-16 and, thereby, activate a series of target genes to resist ultraviolet radiation stress. Moreover, ellagic acid also significantly increased the expression of SOD-3 by 3.61 times and the activity of superoxide dismutase by 3.70 times to clean out harmful reactive oxygen species in C. elegans exposed to ultraviolet radiation stress. In both daf-16 mutant and daf-2; daf-16 double-mutant worms exposed to ultraviolet radiation, ellagic acid could no longer prolong their lifespan. These results indicate that ellagic acid plays an important role in resisting ultraviolet radiation stress in C. elegans, probably in an insulin/IGF-1 signaling pathway-dependent way.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Elágico/farmacología , Factores de Transcripción Forkhead/genética , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Estrés Oxidativo , Polifenoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta/efectos adversos
13.
Bioorg Med Chem Lett ; 41: 127981, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766767

RESUMEN

Increasing evidences demonstrated that PRL-3 was associated with metastatic potential in a variety of cancers including CRC, gastric cancer, ovarian cancer and so on. PRL-3 knock down inhibited the development of metastasis by reducing the size of primary tumors and inhibiting the invasion and growth of cancer cells. Therefore, PRL-3 is a promising diagnostic marker and therapeutic target in tumors. So far, only several PRL-3 inhibitors have been reported. In this study, six rhodanine derivatives were synthesized and characterized. The compounds were evaluated against tyrosine phosphatase PRL-3. Among these compounds, 5-(5-chloro-2-(trifluoromethyl)benzylidene)-2-thioxothiazolidin-4-one (4) could effectively inhibit PRL-3 with IC50 value of 15.22 µM. Fluorescent assays suggested compound 4 tightly bound to tyrosine phosphatase PRL-3 with the molar ratio of 1:1, and the binding constant of 1.74 × 106 M-1. Compound 4 entered into SW-480 cells, selectively inhibited the expression of PRL-3 and increased the phosphorylation of PRL-3 substrates, and decreased the survival rate of SW-480 cells with IC50 of 6.64 µM and induced apoptosis. The results revealed that compound 4 is a dual functional inhibitor against the activity and expression of PRL-3 and a promising anti-cancer candidate targeting PRL-3.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Rodanina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Rodanina/síntesis química , Rodanina/química , Relación Estructura-Actividad
14.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770898

RESUMEN

Human dipeptidyl-peptidase III (hDPP III) is capable of specifically cleaving dipeptides from the N-terminal of small peptides with biological activity such as angiotensin II (Ang II, DRVYIHPF), and participates in blood pressure regulation, pain modulation, and the development of cancers in human biological activities. In this study, 500 ns molecular dynamics simulations were performed on free-hDPP III (PDB code: 5E33), hDPP III-Ang II (PDB code: 5E2Q), and hDPP III-IVYPW (PDB code: 5E3C) to explore how these two peptides affect the catalytic efficiency of enzymes in terms of the binding mode and the conformational changes. Our results indicate that in the case of the hDPP III-Ang II complex, subsite S1 became small and hydrophobic, which might be propitious for the nucleophile to attack the substrate. The structures of the most stable conformations of the three systems revealed that Arg421-Lys423 could form an α-helix with the presence of Ang II, but only part of the α-helix was produced in hDPP III-IVYPW. As the hinge structure in hDPP III, the conformational changes that took place in the Arg421-Lys423 residue could lead to the changes in the shape and space of the catalytic subsites, which might allow water to function as a nucleophile to attack the substrate. Our results may provide new clues to enable the design of new inhibitors for hDPP III in the future.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sitios de Unión , Catálisis , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562680

RESUMEN

CagA is a major virulence factor of Helicobacter pylori. H. pylori CagA is geographically subclassified into East Asian CagA and Western CagA, which are characterized by the presence of a EPIYA-D or EPIYA-C segment. The East Asian CagA is more closely associated with gastric cancer than the Western CagA. In this study, molecular dynamic (MD) simulations were performed to investigate the binding details of SHP2 and EPIYA segments, and to explore the allosteric regulation mechanism of SHP2. Our results show that the EPIYA-D has a stronger binding affinity to the N-SH2 domain of SHP2 than EPIYA-C. In addition, a single EPIYA-D binding to N-SH2 domain of SHP2 can cause a deflection of the key helix B, and the deflected helix B could squeeze the N-SH2 and PTP domains to break the autoinhibition pocket of SHP2. However, a single EPIYA-C binding to the N-SH2 domain of SHP2 cannot break the autoinhibition of SHP2 because the secondary structure of the key helix B is destroyed. However, the tandem EPIYA-C not only increases its binding affinity to SHP2, but also does not significantly break the secondary structure of the key helix B. Our study can help us better understand the mechanism of gastric cancer caused by Helicobacter pylori infection.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Regulación Alostérica , Antígenos Bacterianos/química , Proteínas Bacterianas/química , Activación Enzimática , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Termodinámica
16.
Pharm Biol ; 58(1): 72-79, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31875760

RESUMEN

Context: Cisplatin-based chemotherapy was widely used in treating human malignancies. However, side effects and chemoresistance remains the major obstacle.Objective: To verify whether natural borneol (NB) can enhance cisplatin-induced glioma cell apoptosis and explore the mechanism.Materials and methods: Cytotoxicity of cisplatin and/or NB towards U251 and U87 cells were determined with the MTT assay. Cells were treated with 0.25-80 µg/mL cisplatin and/or 5-80 µM NB for 48 h. The effects of NB and/or cisplatin on apoptosis and cell cycle distribution were quantified by flow cytometric analysis. Protein expression was detected by western blotting. ROS generation was conducted by measuring and visualising an oxidation-sensitive fluorescein DCFH-DA.Results: NB synergistically enhanced the anticancer efficacy of cisplatin in human glioma cells. Co-treatment of 40 µg/mL NB and 40 µg/mL cisplatin significantly inhibited U251 cell viability from 100% to 28.2% and increased the sub-G1 population from 1.4% to 59.3%. Further detection revealed that NB enhanced cisplatin-induced apoptosis by activating caspases and triggering reactive oxygen species (ROS) overproduction as evidenced by the enhancement of green fluorescence intensity from 265% to 645%. ROS-mediated DNA damage was observed as reflected by the activation of ATM/ATR, p53 and histone. Moreover, MAPKs and PI3K/AKT pathways also contributed to co-treatment-induced U251 cell growth inhibition. ROS inhibition by antioxidants effectively improved MAPKs and PI3K/AKT functions and cell viability, indicating that NB enhanced cisplatin-induced cell growth in a ROS-dependent manner.Discussion and conclusions: Natural borneol had the potential to sensitise human glioma cells to cisplatin-induced apoptosis with potential application in the clinic.


Asunto(s)
Antineoplásicos/farmacología , Canfanos/farmacología , Cisplatino/farmacología , Glioma/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Canfanos/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Glioma/patología , Humanos , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Genes Immun ; 20(2): 103-111, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29483615

RESUMEN

Genetic variants near the tumor necrosis factor-α-induced protein 3 gene (TNFAIP3) at the chromosomal region 6q23 demonstrated significant associations with multiple autoimmune diseases. The signals of associations have been explained to the TNFAIP3 gene, the most likely causal gene. In this study, we employed CRISPR/cas9 genome-editing tool to generate cell lines with deletions including a candidate causal variant, rs6927172, at 140 kb upstream of the TNFAIP3 gene. Interestingly, we observed alterations of multiple genes including IL-20RA encoding a subunit of the receptor for interleukin 20. Using Electrophoretic mobility shift assay (EMSA), Western blotting, and chromatin conformation capture we characterized the molecular mechanism that the DNA element carrying the variant rs6927172 influences expression of IL-20RA and TNFAIP3 genes. Additionally, we developed a new use of the transcription activator-like effector (TALE) to study the role of the variant in regulating expressions of its target genes. In summary, we generated deletion knockouts that included the candidate causal variant rs6927172 in HEK293T cells provided new evidence and mechanism for IL-20RA gene as a risk factor for multiple autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/genética , Polimorfismo de Nucleótido Simple , Receptores de Interleucina/genética , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Mutación , Receptores de Interleucina/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
18.
J Biol Chem ; 293(33): 12719-12729, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29934310

RESUMEN

The androgen receptor (AR) is a ligand-activated nuclear receptor that plays a critical role in normal prostate physiology, as well as in the development and progression of prostate cancer. In addition to the classical paradigm in which AR exerts its biological effects in the nucleus by orchestrating the expression of the androgen-regulated transcriptome, there is considerable evidence supporting a rapid, nongenomic activity mediated by membrane-associated AR. Although the genomic action of AR has been studied in depth, the molecular events governing AR transport to the plasma membrane and the downstream AR signaling cascades remain poorly understood. In this study, we report that AR membrane transport is microtubule-dependent. Disruption of the function of kinesin 5B (KIF5B), but not of kinesin C3 (KIFC3), interfered with AR membrane association and signaling. Co-immunoprecipitation and pulldown assays revealed that AR physically interacts with KIF5B and that androgen enhances this interaction. Furthermore, we show that heat shock protein 27 (HSP27) is activated by membrane-associated AR and that HSP27 plays an important role in mediating AR-mediated membrane-to-nuclear signal transduction. Together, these results indicate that AR membrane translocation is mediated by the microtubule cytoskeleton and the motor protein KIF5B. By activating HSP27, membrane-associated AR potentiates the transcriptional activity of nuclear AR. We conclude that disruption of AR membrane translocation may represent a potential strategy for targeting AR signaling therapeutically in prostate cancer.


Asunto(s)
Membrana Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico HSP27/metabolismo , Cinesinas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transcripción Genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Cinesinas/genética , Masculino , Microtúbulos/metabolismo , Chaperonas Moleculares , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transporte de Proteínas , Receptores Androgénicos/genética , Células Tumorales Cultivadas
19.
Int J Med Sci ; 16(12): 1541-1548, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31839741

RESUMEN

Objective: Currently, sorafenib is the main systemic chemotherapy drug for advanced stage of hepatocellular carcinoma (HCC). However, emerging data from some clinical HCC patients indicates that sorafenib alone has only moderate antitumor efficacy, and could not inhibit metastasis and progression of disease. MiR-221 plays a role in promoting tumorigenesis in HCC by inhibiting the expression of p27. In this study, we analyzed the synergistic anti-tumor effects of sorafenib and gold nanoparticles-loaded anti-miR221 on HCC cell lines. Methods: Gold nanoparticles-loaded anti-miR221 was investigated and identified by transmission electron microscope, ultraviolet-visible spectroscopy, zeta potential and dynamic light scattering measurements as well as the confocal microscopy and dark-field imaging. Two HCC cell lines were treated with sorafenib and AuNPs-anti-miR221 alone or combination in vitro to investigate the inhibitory effect by CCK-8, live/dead fluorescence staining and colony-forming unit assays. MiR-221/p27/DNMT1 signaling pathway including p27 and DNMT1 was examined by western blot. Results: AuNPs-anti-miR221 can enhance the effect of sorafenib in inhibiting cell proliferation via inactivating miR-221/p27/DNMT1 signaling pathway. Conclusions: Our results demonstrate that sorafenib combined with AuNPs-anti-miR221 treatment does effectively inhibit proliferation of HCC cell lines synergistically. These data suggest the AuNPs-anti-miR221 may be a promising chemosensitizer to sorafenib in the treatment of HCC.


Asunto(s)
Antagomirs/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/genética , Sorafenib/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/genética , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Oro/química , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Nanopartículas del Metal/química , Ratones , MicroARNs/antagonistas & inhibidores , Antígeno Nuclear de Célula en Proliferación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Med Sci Monit ; 25: 8172-8180, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31670317

RESUMEN

BACKGROUND Baicalin, one of the main bioactive components extracted from the traditional Chinese medicine baical Skullcap root, has an anti-tumor activity which had been studied in several cancers. However, its role in human mesothelioma remains unknown. In this study, we investigated the anti-tumor mechanisms of baicalin in the mesothelioma cell line MESO924. MATERIAL AND METHODS Effects of baicalin on mesothelioma were assessed by measuring cell viability, apoptosis, migration, invasion, inactivation of signaling intermediates, and cell-cycle alterations. RESULTS Baicalin inhibited the proliferation, migration, and invasion of human mesothelioma cells and increased their apoptosis, all in a dose-dependent manner. Specifically, baicalin decreased the expression of p-EGFR, p-AKT, p-MAPK, p-S6, Bcl-2, and VEGF and increased the expression of Bax in mesothelioma cells. The suppressed mesothelioma cellular proliferation is due to the arrest of the S cell cycle by baicalin. Inhibition of the PI3K/AKT/mTOR signaling pathway by a PI3K/AKT/mTOR inhibitor augmented the anti-proliferation effects induced by baicalin. In addition, baicalin increased the sensitivity of MESO924 to the chemotherapeutic drugs doxorubicin, cisplatin, and pemetrexed. CONCLUSIONS These results highlight the roles of baicalin in inhibiting cell growth, migration, and invasion of mesothelioma cells while increasing apoptosis and sensitizing cells to chemotherapeutic agents through the PI3K/AKT/mTOR signaling pathway, which indicates that baicalin could be a useful drug for mesothelioma therapy.


Asunto(s)
Flavonoides/farmacología , Mesotelioma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , China , Flavonoides/metabolismo , Flavonoides/uso terapéutico , Humanos , Invasividad Neoplásica/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA