Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 30(4): 045601, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30465544

RESUMEN

The production of printable graphene flakes is not easy to scale up when produced by ultrasonication and purified by centrifugation. In this work, natural graphite flakes were exfoliated by wet ball milling in water supported by the addition of sodium deoxycholate as a surfactant and the dispersion was formulated for inkjet printing. By subsequent dilution and filtration of the milling paste, more than 45 l of a stable dispersion of nano-graphite particles in one batch process was obtained. The dispersion was characterized by thermogravimetric analysis and UV-vis spectroscopy to determine concentration, and experiments to measure long-term stability were conducted. The nano-graphite particles were analyzed by optical microscopy, scanning electron microscopy and Raman spectroscopy, revealing 300-400 nm sized particles. The dispersion was formulated into an inkjet ink and tested as interfacial hole transport layer between the anode and the photo-active bulk-heterojunction layer of an organic solar cell with inverted structure. The nano-graphite flakes are inkjet printable and conductive and therefore show potential as a low-cost alternative to polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate.

2.
Micromachines (Basel) ; 14(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37893294

RESUMEN

This work demonstrates the green production of a graphene ink for inkjet printing and its use as a hole transport layer (HTL) in an organic solar cell. Graphene as an HTL improves the selective hole extraction at the anode and prevents charge recombination at the electronic interface and metal diffusion into the photoactive layer. Graphite was exfoliated in water, concentrated by iterative centrifugation, and characterized by Raman. The concentrated graphene ink was incorporated into inverted organic solar cells by inkjet printing on the active polymer in an ambient atmosphere. Argon plasma was used to enhance wetting of the polymer with the graphene ink during printing. The argon plasma treatment of the active polymer P3HT:PCBM was investigated by XPS, AFM and contact angle measurements. Efficiency and lifetime studies undertaken show that the device with graphene as HTL is fully functional and has good potential for an inkjet printable and flexible alternative to PEDOT:PSS.

3.
ChemSusChem ; 10(1): 226-233, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27792284

RESUMEN

We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2 . This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H2 and CO2 to CH4 and water. This study shows the biofilm formation of those microorganisms on a carbon felt electrode and the long-term performance for CO2 reduction to CH4 using direct electrochemical reduction. CO2 reduction is performed simply by electron uptake with gaseous CO2 as the sole carbon source in a defined medium. This "electrometabolism" in such microbial electrolysis cells depends strongly on the potential applied as well as on the environmental conditions. We investigated the performance using different adaption mechanisms and a constant potential of -700 mV vs. Ag/AgCl for CH4 generation at 30-35 °C. The experiments were performed by using two-compartment electrochemical cells. Production rates with Faradaic efficiencies of around 22 % were observed.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Dióxido de Carbono/metabolismo , Metano/metabolismo , Biopelículas , Catálisis , Electroquímica , Transporte de Electrón
4.
ChemSusChem ; 9(6): 631-5, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26890322

RESUMEN

We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired.


Asunto(s)
Dióxido de Carbono/química , Electrodos , Enzimas Inmovilizadas/química , Metanol/química , Electrones
5.
ChemSusChem ; 3(3): 356-66, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-20077464

RESUMEN

Novel fullerene derivatives bearing thiophene and furan residues were synthesized and studied as electron acceptor materials in bulk heterojunction organic solar cells, together with poly(3-hexylthiophene) (P3HT) as the donor polymer. Some compounds showed large nanomorphological inhomogenities in blends with P3HT; in particular, clusters with dimensions in the range of 100-1000 nm were formed. However, some blends that showed such large clusters yielded at the same time high power conversion efficiencies in photovoltaic devices, approaching 3.7 %. This is in sharp contrast with previously studied systems, in which a substantial phase separation always resulted in a poor photovoltaic performance. We assume that the attachment of thienyl or furyl groups to the fullerene cage results in a certain ordering of the designed fullerene derivatives I-IX with P3HT in photoactive blends. Both the fullerene derivative and P3HT might assemble via pi-pi stacking of the thiophene units to form the nanostructures observed in the films by optical and atomic force microscopy. The presence of ordered donor and acceptor counterparts in these nanostructures results in superior photovoltaic device operation.


Asunto(s)
Suministros de Energía Eléctrica , Fulerenos/química , Furanos/química , Metanol , Energía Solar , Tiofenos/química , Electroquímica , Metanol/análogos & derivados , Metanol/síntesis química , Metanol/química , Microscopía de Fuerza Atómica , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fotoquímica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA