RESUMEN
Comprehending symbiont abundance among host species is a major ecological endeavour, and the metabolic theory of ecology has been proposed to understand what constrains symbiont populations. We parameterized metabolic theory equations to investigate how bird species' body size and the body size of their feather mites relate to mite abundance according to four potential energy (uropygial gland size) and space constraints (wing area, total length of barbs and number of feather barbs). Predictions were compared with the empirical scaling of feather mite abundance across 106 passerine bird species (26,604 individual birds sampled), using phylogenetic modelling and quantile regression. Feather mite abundance was strongly constrained by host space (number of feather barbs) but not by energy. Moreover, feather mite species' body size was unrelated to the body size of their host species. We discuss the implications of our results for our understanding of the bird-feather mite system and for symbiont abundance in general.
Asunto(s)
Enfermedades de las Aves , Infestaciones por Ácaros , Ácaros , Passeriformes , Animales , Filogenia , Tamaño Corporal , Infestaciones por Ácaros/veterinariaRESUMEN
When populations become geographically isolated, they begin to diverge in various traits and at variable rates. The dynamics of such trait divergences are relevant for understanding evolutionary processes such as local adaptation and speciation. Here we examine divergences in sperm and body structures in a polygynandrous songbird, the alpine accentor (Prunella collaris) between two allopatric high-altitude populations, in Morocco and Spain. The populations diverged around 82,000 years ago, as estimated with a coalescence-based phylogenetic analysis of genome-wide single-nucleotide polymorphisms. We found that birds in the two areas had nonoverlapping sperm lengths, which suggests adaptation to divergent female reproductive tract environments. Sperm length also showed an exceptionally low coefficient of among-male variation, a signal of strong stabilizing selection imposed by sperm competition. The evolutionary rate of sperm length was almost twice the rates for the most divergent morphological traits and more than three times higher than expected from literature data over a similar generational timescale. This rapid evolution of a key reproductive trait has implications for reproductive isolation and ultimately for speciation. Strong selection for different sperm length optima in allopatry predicts conspecific sperm precedence and disruptive selection in sympatry, hence a possible postcopulatory prezygotic barrier to gene flow.