RESUMEN
INTRODUCTION: We aimed at evaluating a Gjedde-Patlak plot and non-invasive image-derived input functions (IDIF) from the aorta to quantify cerebral glucose metabolic rate (CMRglc) in comparison to the reference standard based on sampling the arterial input function (AIF). METHOD: Six healthy subjects received 200 MBq [18F]FDG simultaneously with the initiation of a three-part dynamic PET recording consisting of a 15 min-recording of the aorta, a 40 min-recording of the brain and finally 2 min-recording of the aorta. Simultaneously, the arterial 18F concentration was measured via arterial cannulation. Regions of interest were drawn in the aorta and the brain and time-activity curves extracted. The IDIF was obtained by fitting a triple exponential function to the aorta time-activity curve after the initial peak including the late aorta frame, thereby interpolating the arterial blood activity concentration during the brain scan. CMRglc was calculated from Gjedde-Patlak plots using AIF and IDIF, respectively and the predictive value was examined. Results from frontal cortex, insula, hippocampus and cerebellum were compared by paired t-test and agreement between the methods was analyzed by Bland-Altman plot statistics. RESULTS: There was a strong linear relationship and an excellent agreement between the methods (mean±SD of CMRglcIDIF (µmol 100 g-1 min-1), mean difference, mean relative difference, 95% limits of agreement): frontal cortex: 30.8 ± 3.3, 0.5, 2.2%, [-1,6:2.5], insula: 25.4 ± 2.2, 0.4, 2.4%, [-1.4:2.2], hippocampus: 16.9 ± 1.2, 0.4, 3.8%, [-1.1:2.0] and cerebellum: 23.4 ± 1.9, 0.5, 3.1%, [-1.4:2.5]). CONCLUSION: We found excellent agreement between CMRglc obtained with an IDIF from the aorta and the reference standard with AIF. A non-invasive three-part dynamic [18F]FDG PET recording is feasible as a non-invasive alternative for reliable quantification of cerebral glucose metabolism in all scanner systems. This is useful in patients with presumed global cerebral changes owing to systemic disease or for the monitoring of treatment effects.
Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Algoritmos , Aorta/diagnóstico por imagen , Aorta/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Humanos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismoRESUMEN
PURPOSE: The R2* relaxation rate constant has been suggested as a sensitive measure for iron accumulation. The aim of this multi-center study was to assess the inter-scanner and inter-subject variability of R2* mapping and to investigate the relationship between brain volume and R2* in specific structures. METHODS: R2* mapping was performed in 81 healthy subjects in seven centers using different 3 T systems. R2* was calculated from a dual-echo gradient echo sequence and was assessed in several deep gray matter structures. The inter-scanner and inter-subject variability of R2* was calculated by means of the coefficient of variation before and after correcting for age. RESULTS: Significant center effects were seen in some regions which get lost after age correction. The coefficient of variation for the inter-center variability was much lower (<5.6%) than for the intra-subject variability (6.7%-11.7%). R2* in the putamen and red nucleus scaled with cortical volume while R2* in the globus pallidus and the substantia nigra was negatively associated with white matter volume. CONCLUSION: R2* is a robust and reproducible measure in a multicenter setting provided that a standardized MRI protocol is used. The relationship between iron concentration in deep gray matter and volume of specific brain compartments needs further investigation.
Asunto(s)
Encéfalo/anatomía & histología , Sustancia Gris/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto JovenRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disorder with increasing global prevalence and accounts for over half of all dementia cases. Early diagnosis is paramount for not only the management of the disease, but also for the development of new AD treatments. The current golden standard for diagnosis is performed by positron emission tomography (PET) scans with the tracer [11C]Pittsburg Compound B ([11C]PiB), which targets amyloid beta protein (Aß) that builds up as plaques in the brain of AD patients. The increasing demand for AD diagnostics is in turn expected to drive an increase in [11C]PiB-PET scans and the setup of new [11C]PiB production lines at PET centers globally. Here, we present the [11C]PiB production setups, experiences, and use from four Danish PET facilities and discuss the challenges and potential pitfalls of [11C]PiB production. We report on the [11C]PiB production performed with the 6-OH-BTA-0 precursor dissolved in either dry acetone or 2-butanone and by using either [11C]CO2 or [11C]CH4 as 11C- precursors on three different commercial synthesis modules: TracerLab FX C Pro, ScanSys, or TracerMaker. It was found that the [11C]CO2 method gives the highest radioactive yield (1.5 to 3.2 GBq vs. 0.8 ± 0.3 GBq), while the highest molar activity (98.0 ± 61.4 GBq/µmol vs. 21.2 to 95.6 GBq/µmol) was achieved using [11C]CH4. [11C]PiB production with [11C]CO2 on a TracerLab FX C Pro offered the most desirable results, with the highest yield of 3.17 ± 1.20 GBq and good molar activity of 95.6 ± 44.2 GBq/µmol. Moreover, all reported methods produced [11C]PiB in quantities suitable for clinical applications, thus providing a foundation for other PET facilities seeking to establish their own [11C]PiB production.
RESUMEN
Introduction: Elite breath-hold divers (BHD) enduring apneas of more than 5 min are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low oxygen-consumption in their hearts and skeletal muscles, similar to adult seals. Adult seals possess an adaptive higher hemoglobin-concentration and Bohr effect than pups, and when sedated, adult seals demonstrate a blood shift from the spleen towards the brain, lungs, and heart during apnea. We hypothesized these observations to be similar in human BHD. Therefore, we measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n = 11) and matched controls (n = 11) at rest, while myocardial mass, spleen and lower extremity volumes were assessed at rest and during apnea in BHD. Methods and results: After 4 min of apnea, left ventricular myocardial mass (LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was unaltered compared to rest. During maximum apnea (â¼6 min), lower extremity volume assessed by DXA-scan revealed a â¼268 mL decrease, and spleen volume, assessed by ultrasonography, decreased â¼102 mL. Compared to age, BMI and VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3- biphosphoglycerate-concentrations, but higher total hemoglobin-concentrations. Conclusion: Our results indicate: 1) Apnea training in BHD may increase hemoglobin concentration as an oxygen conserving adaptation similar to adult diving mammals. 2) The blood shift during dry apnea in BHD is 162% more from the lower extremities than from the spleen. 3) In contrast to the previous theory of the blood shift demonstrated in sedated adult seals, blood shift is not towards the heart during dry apnea in humans.
RESUMEN
Introduction: Elite breath-hold divers (BHD) possess several oxygen conserving adaptations to endure long dives similar to diving mammals. During dives, Bottlenose Dolphins may increase the alveolar ventilation (VA) to perfusion (Q) ratio to increase alveolar oxygen delivery. We hypothesized that BHD possess similar adaptive mechanisms during apnea. Methods and results: Pulmonary blood volume (PBV) was determined by echocardiography, 15O-H2O PET/CT, and cardiac MRi, (n = 6) during and after maximum apneas. Pulmonary function was determined by body box spirometry and compared to matched controls. After 2 min of apnea, the PBV determined by echocardiography and 15O-H2O-PET/CT decreased by 26% and 41%, respectively. After 4 min of apnea, the PBV assessed by echocardiography and cardiac MRi decreased by 48% and 67%, respectively (n = 6). Fractional saturation (F)O2Hb determined by arterial blood-gas-analyses collected after warm-up and a 5-minute pool-apnea (n = 9) decreased by 43%. Compared to matched controls (n = 8), spirometry revealed a higher total and alveolar-lung-capacity in BHD (n = 9), but a lower diffusion-constant. Conclusion: Our results contrast with previous studies, that demonstrated similar lung gas transfer in BHD and matched controls. We conclude that elite BHD 1) have a lower diffusion constant than matched controls, and 2) gradually decrease PBV during apnea and in turn increase VA/Q to increase alveolar oxygen delivery during maximum apnea. We suggest that BHD possess pulmonary adaptations similar to diving mammals to tolerate decreasing tissue oxygenation. New and noteworthy: This manuscript addresses novel knowledge on tolerance to hypoxia during diving, which is shared by elite breath-hold divers and adult diving mammals: Our study indicates that elite breath-hold divers gradually decrease pulmonary blood volume and in turn increase VA/Q, to increase alveolar oxygen delivery during maximum apnea to tolerate decreasing oxygen levels similar to the Bottlenose Dolphin.
RESUMEN
BACKGROUND: Chronic kidney disease (CKD) is prevalent in the aging population and increases the risk of fracture 2-4 times. We compared optimized quantitative [18F]fluoride PET/CT methods to the reference standard with arterial input function (AIF) to identify a clinically accessible method for evaluation of bone turnover in patients with CKD. METHODS: Ten patients on chronic hemodialysis treatment and ten control patients were recruited. A dynamic 60-min [18F]fluoride PET scan was obtained from the 5th lumbar vertebra to the proximal femur simultaneously with arterial blood sampling to achieve an AIF. Individual AIFs were time-shifted to compute a population curve (PDIF). Bone and vascular volumes-of-interest (VOIs) were drawn, and an image-derived-input-function (IDIF) was extracted. PDIF and IDIF were scaled to plasma. Bone turnover (Ki) was calculated with the AIF, PDIF, and IDIF and bone VOIs using a Gjedde-Patlak plot. Input methods were compared using correlations and precision errors. RESULTS: The calculated Ki from the five non-invasive methods all correlated to the Ki from the AIF method with the PDIF scaled to a single late plasma sample showing the highest correlations (r > 0.94), and the lowest precision error of 3-5%. Furthermore, the femoral bone VOI's correlated positively to p-PTH and showed significant differences between patients and controls. CONCLUSIONS: Dynamic 30 min [18F]fluoride PET/CT with a population based input curve scaled to a single venous plasma sample is a feasible and precise non-invasive diagnostic method for the assessment of bone turnover in patients with CKD. The method may potentially allow for earlier and more precise diagnosis and may be useful for assessment of treatment effects, which is crucial for development of future treatment strategies.
Asunto(s)
Fluoruros , Insuficiencia Renal Crónica , Humanos , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Insuficiencia Renal Crónica/diagnóstico por imagen , Remodelación ÓseaRESUMEN
Background: Disturbances in presynaptic dopamine activity and levels of GABA (gamma-aminobutyric acid) and glutamate plus glutamine collectively may have a role in the pathophysiology of psychosis, although separately they are poor diagnostic markers. We tested whether these neurotransmitters in combination improve the distinction of antipsychotic-naïve patients with first-episode psychosis from healthy control subjects. Methods: We included 23 patients (mean age 22.3 years, 9 male) and 20 control subjects (mean age 22.4 years, 8 male). We determined dopamine metabolism in the nucleus accumbens and striatum from 18F-fluorodopa (18F-FDOPA) positron emission tomography. We measured GABA levels in the anterior cingulate cortex (ACC) and glutamate plus glutamine levels in the ACC and left thalamus with 3T proton magnetic resonance spectroscopy. We used binominal logistic regression for unimodal prediction when we modeled neurotransmitters individually and for multimodal prediction when we combined the 3 neurotransmitters. We selected the best combination based on Akaike information criterion. Results: Individual neurotransmitters failed to predict group. Three triple neurotransmitter combinations significantly predicted group after Benjamini-Hochberg correction. The best model (Akaike information criterion 48.5) carried 93.5% of the cumulative model weight. It reached a classification accuracy of 83.7% (p = .003) and included dopamine synthesis capacity (Ki4p) in the nucleus accumbens (p = .664), GABA levels in the ACC (p = .019), glutamate plus glutamine levels in the thalamus (p = .678), and the interaction term Ki4p × GABA (p = .016). Conclusions: Our multimodal approach proved superior classification accuracy, implying that the pathophysiology of patients represents a combination of neurotransmitter disturbances rather than aberrations in a single neurotransmitter. Particularly aberrant interrelations between Ki4p in the nucleus accumbens and GABA values in the ACC appeared to contribute diagnostic information.
RESUMEN
To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed. The performance of different single-trial EEG regressors was compared in terms of predicting the measured blood oxygenation level dependent response. The EEG-based regressors were the amplitude and latency of the primary positive (P1) and negative (N2) peaks of the visual evoked potential, the combined P1-N2 amplitude, and the alpha power. Apart from peak latencies, all regressors showed significant positive or negative correlation with the blood oxygenation level dependent response in visual cortex. In addition, several EEG-based regressors were found to predict blood oxygenation level dependent variations in different occipital and extraoccipital cortical areas not explained by the boxcar regressor. The results suggest that the P1-N2 regressor is the best EEG-based regressor to model the visual paradigm, but when looking for additional effects like habituation or attention modulation that cannot be modeled by the boxcar regressor, it is better to include regressors based on individual peaks or alpha power.
Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Imagen por Resonancia Magnética/métodos , Consumo de Oxígeno/fisiología , Oxígeno/sangre , Corteza Visual/fisiología , Adulto , Humanos , Persona de Mediana Edad , Estadística como Asunto , Técnica de Sustracción , Adulto JovenRESUMEN
BACKGROUND: In recent years, small-scale clinical trials have indicated that statins or 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase inhibitors exert pleiotropic immunomodulatory effects, with potential therapeutic implications in multiple sclerosis (MS). OBJECTIVE: To investigate whether simvastatin treatment (80 mg daily for 6 months) in patients with optic neuritis (ON) had a beneficial effect on visual outcome and on brain MRI. METHODS: Sixty-four patients with acute ON were randomized to simvastatin treatment (n = 32) or placebo (n = 32) for 6 months. None of the patients had been on immunosuppressive therapy for 6 months prior to inclusion or treated with steroids from symptom onset. Contrast sensitivity (Arden plates), visual acuity, colour perception, visual evoked potentials (VEP)--latency and amplitude, Visual Analogue Scale (VAS) score, and gadolinium enhancing and T2 lesions on brain MRI were evaluated at screening visit, day 14 (except brain MRI), day 90 and day 180. RESULTS: Simvastatin had a beneficial effect on VEP in both latency (p = 0.01) and amplitude (p = 0.01), a borderline effect on the Arden score (p = 0.06) and VAS (p = 0.04), and no effect on brain MRI or on relapse rate between the groups. CONCLUSION: This study provides Class I evidence that simvastatin 80 mg daily is well tolerated and possibly effective in patients with acute ON.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Neuritis Óptica/tratamiento farmacológico , Simvastatina/uso terapéutico , Agudeza Visual/efectos de los fármacos , Adolescente , Adulto , Encéfalo/efectos de los fármacos , Encéfalo/patología , Percepción de Color/efectos de los fármacos , Método Doble Ciego , Potenciales Evocados Visuales/efectos de los fármacos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuritis Óptica/patología , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: Dopamine activity has been associated with the response to antipsychotic treatment. Our study used a four-parameter model to test the association between the striatal decarboxylation rate of 18F-DOPA to 18F-dopamine (k3) and the effect of treatment on psychotic symptoms in antipsychotic-naïve patients with first-episode psychosis. We further explored the effect of treatment with a partial dopamine D2 receptor agonist (aripiprazole) on k3 and dopamine synthesis capacity (DSC) determined by the four-parameter model and by the conventional tissue reference method. METHODS: Sixty-two individuals (31 patients and 31 control subjects) underwent 18F-DOPA positron emission tomography at baseline, and 15 patients were re-examined after 6 weeks. Clinical re-examinations were completed after 6 weeks (n = 28) and 6 months (n = 15). Symptoms were evaluated with the Positive and Negative Syndrome Scale. RESULTS: High baseline decarboxylation rates (k3) were associated with more positive symptoms at baseline (p < .001) and with symptom improvement after 6 weeks (p = .006). Subregion analyses showed that baseline k3 for the putamen (p = .003) and nucleus accumbens (p = .013) and DSC values for the nucleus accumbens (p = .003) were associated with psychotic symptoms. The tissue reference method yielded no associations between DSC and symptoms or symptom improvement. Neither method revealed any effects of group or treatment on average magnitudes of k3 or DSC, whereas changes in dopamine synthesis were correlated with higher baseline values, implying a potential effect of treatment. CONCLUSIONS: Striatal decarboxylation rate at baseline was associated with psychotic symptoms and treatment response. The strong association between k3 and treatment effect potentially implicate on new treatment strategies.
Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Antipsicóticos/uso terapéutico , Cuerpo Estriado , Dopamina , Agonistas de Dopamina/uso terapéutico , Humanos , Tomografía de Emisión de Positrones , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológicoRESUMEN
BACKGROUND: Acute monosymptomatic optic neuritis (ON) may be the earliest manifestation of multiple sclerosis (MS). Atrophy has been shown to be a prominent feature of MS with great impact on disability. OBJECTIVES: The objectives of this study were to evaluate retinal and brain atrophy and possible associations at the earliest possible stages of MS. METHODS: In a prospective observational cohort study we included 60 untreated patients with monosymptomatic ON and 19 healthy volunteers. Unaffected fellow eyes were examined with optical coherence tomography (OCT) and normalized brain volumes were calculated based on MRI. Additionally, visual evoked potentials (VEPs) were recorded. RESULTS: Neither OCT measurements nor brain volume measures revealed signs of localized or generalized atrophy in patients compared with healthy volunteers. Stratification of patients into high risk based on the presence of white matter lesions did not reveal differences. The association between OCT measures and brain volumes previously found could not be confirmed at the time of the first clinical event. VEP latency was significantly prolonged in patients with white matter lesions compared to those without lesions. A trend towards a relationship between VEP amplitude of fellow eyes and brain volumes was noted. CONCLUSIONS: In this cohort we were not able to show atrophic features in the retina or the brain, and the association between structural measures of the retina and the brain as indicated in the later stages of MS could not be reproduced. These findings suggest that atrophy does require time to evolve and indicate the complexity of the relationship between local and general structural measures.