Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820736

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Asunto(s)
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulencia/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885263

RESUMEN

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.

3.
PLoS Biol ; 21(1): e3001945, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656825

RESUMEN

Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.


Asunto(s)
Oryza , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Hongos/metabolismo , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252011

RESUMEN

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Plantas/metabolismo , Zinc/metabolismo
5.
PLoS Pathog ; 18(9): e1010792, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36173975

RESUMEN

When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism.


Asunto(s)
Arabidopsis , Oryza , Celulosa , Cisteína , Proteínas Fúngicas/genética , Oryza/genética , Xilanos
6.
Phytopathology ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870071

RESUMEN

Gentians (Gentiana spp.) as floriculture crops are constantly exposed to several fungal and viral pathogens in the field. Among the fungal diseases afflicting gentian production, gentian sclerotial flower blight caused by Ciborinia gentianae incurs economic losses as it affects both flowers pre- and post-harvest. Currently, preventive measures for this disease are limited, and no resistant cultivar has been reported. This is partly because of the lack of a reliable infection system that could promote research on this plant-fungus interaction. In this study, Gentiana plant tissue culture material was inoculated with C. gentianiae culture filtrate. We successfully demonstrated non-ascospore mediated infection of C. gentianae. Inoculation of individual hyphal structures present in the culture filtrate suggested that sclerotial primordia are the main agents of this infection. Interestingly, we observe that primary infection of C. gentianae in petals but not leaves potentiates systemic infection resembling the fungus' infection strategy in the field. Moreover, we show that, 1) non-ascospore hyphal structures can also cause disease in flowers grown in the field and, 2) ascosporic infection can also be observed using the in vitro system, opening possibilities for both practical and basic researches aimed to combat gentian sclerotial flower blight disease.

7.
Arch Virol ; 166(7): 1991-1997, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33929615

RESUMEN

Tombusviruses have been identified in several crops, including gentian virus A (GeVA) in Japanese gentian. In this study, we isolated another tombusvirus, Sikte waterborne virus strain C1 (SWBV-C1), from Japanese gentian. Although SWBV-C1 and GeVA are not closely related, SWBV-C1, like GeVA, showed host-specific low-temperature-dependent replication in gentian and arabidopsis. The use of in vitro transcripts from full-length cDNA clones of SWBV-C1 genomic RNA as inocula confirmed these properties, indicating that the identified genomic RNA sequences encode viral factors responsible for the characteristic features of SWBV-C1.


Asunto(s)
ADN Complementario/genética , Gentiana/virología , Tombusvirus/genética , Replicación Viral/genética , Secuencia de Aminoácidos , Secuencia de Bases/genética , Células Clonales , Clonación Molecular/métodos , Genoma Viral/genética , Japón , Enfermedades de las Plantas/virología , ARN Viral/genética , Temperatura
8.
Mol Plant Microbe Interact ; 32(4): 428-436, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30295581

RESUMEN

Plant stomata represent the main battlefield for host plants and the pathogens that enter plant tissues via stomata. Septoria spp., a group of ascomycete fungi, use host plant stomata for invasion and cause serious damage to agricultural plants. There is no evidence, however, showing the involvement of stomata in defense systems against Septoria infection. In this study, we isolated Septoria gentianae 20-35 (Sg20-35) from Gentiana triflora showing gentian leaf blight disease symptoms in the field. Establishment of an infection system using gentian plants cultured in vitro enabled us to observe the Sg20-35 infection process and estimate its virulence in several gentian cultivars or lines. Sg20-35 also entered gentian tissues via stomata and showed increased virulence in G. triflora compared with G. scabra and their interspecific hybrid. Notably, the susceptibility of gentian cultivars to Sg20-35 was associated with their stomatal density on the adaxial but not abaxial leaf surface. Treatment of EPIDERMAL PATTERNING FACTOR-LIKE 9 (EPFL9/STOMAGEN) peptides, a small secreted peptide controlling stomatal density in Arabidopsis thaliana, increased stomatal density on the adaxial side of gentian leaves as well. Consequently, treated plants showed enhanced susceptibility to Sg20-35. These results indicate that stomatal density on the adaxial leaf surface is one of the major factors determining the susceptibility of gentian cultivars to S. gentianae and suggest that stomatal density control may represent an effective strategy to confer Septoria resistance.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Gentiana , Estomas de Plantas , Ascomicetos/fisiología , Resistencia a la Enfermedad/fisiología , Gentiana/anatomía & histología , Gentiana/microbiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Proteínas de Plantas/farmacología
9.
Mol Plant Microbe Interact ; 31(1): 34-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29144205

RESUMEN

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiología , Secuencia de Aminoácidos , Evolución Biológica , Variación Genética , Proteínas NLR/química , Proteínas NLR/genética , Plantas/inmunología , Selección Genética
10.
Arch Virol ; 163(9): 2477-2483, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29786120

RESUMEN

The DECS (dsRNA isolation, exhaustive amplification, cloning and sequencing) analysis technique for viral diagnosis detected a tombusvirus in Japanese gentian not displaying severe symptoms. We tentatively named this virus "gentian virus A" (GeVA). GeVA systemically but inefficiently infected Japanese gentian without causing visible symptoms, while it led to severe symptoms in some other plants. The complete genome sequence of GeVA indicated a typical tombusvirus-like structure. Phylogenetic analysis of the deduced amino acid sequences of four tombusvirus-encoded proteins did not reveal other known tombusviruses that were closely-related to GeVA, suggesting that it is a novel tombusvirus.


Asunto(s)
Genoma Viral , Gentiana/virología , Enfermedades de las Plantas/virología , ARN Bicatenario/genética , ARN Viral/genética , Tombusvirus/genética , Secuencia de Aminoácidos , Japón , Filogenia , Hojas de la Planta/virología , Nicotiana/virología , Tombusvirus/clasificación , Tombusvirus/aislamiento & purificación
11.
Plant J ; 83(5): 875-87, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26186703

RESUMEN

Vesicle trafficking including the exocytosis pathway is intimately associated with host immunity against pathogens. However, we still have insufficient knowledge about how it contributes to immunity, and how pathogen factors affect it. In this study, we explore host factors that interact with the Magnaporthe oryzae effector AVR-Pii. Gel filtration chromatography and co-immunoprecipitation assays identified a 150 kDa complex of proteins in the soluble fraction comprising AVR-Pii and OsExo70-F2 and OsExo70-F3, two rice Exo70 proteins presumably involved in exocytosis. Simultaneous knockdown of OsExo70-F2 and F3 totally abrogated Pii immune receptor-dependent resistance, but had no effect on Pia- and Pik-dependent resistance. Knockdown levels of OsExo70-F3 but not OsExo70-F2 correlated with reduction of Pii function, suggesting that OsExo70-F3 is specifically involved in Pii-dependent resistance. Under our current experimental conditions, over-expression of AVR-Pii or knockdown of OsExo70-F2 and -F3 genes in rice did not affect the virulence of compatible isolates of M. oryzae. AVR-Pii interaction with OsExo70-F3 appears to play a crucial role in immunity triggered by Pii, suggesting a role for OsExo70 as a decoy or helper in Pii/AVR-Pii interactions.


Asunto(s)
Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/patogenicidad , Oryza/inmunología , Oryza/microbiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Burkholderia/patogenicidad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Magnaporthe/metabolismo , Datos de Secuencia Molecular , Oryza/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Multimerización de Proteína , Xanthomonas/patogenicidad
12.
New Phytol ; 210(4): 1282-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26864209

RESUMEN

Understanding how plants allocate their resources to growth or defence is of long-term importance to the development of new and improved varieties of different crops. Using molecular genetics, plant physiology, hormone analysis and Next-Generation Sequencing (NGS)-based transcript profiling, we have isolated and characterized the rice (Oryza sativa) LESION AND LAMINA BENDING (LLB) gene that encodes a chloroplast-targeted putative leucine carboxyl methyltransferase. Loss of LLB function results in reduced growth and yield, hypersensitive response (HR)-like lesions, accumulation of the antimicrobial compounds momilactones and phytocassanes, and constitutive expression of pathogenesis-related genes. Consistent with these defence-associated responses, llb shows enhanced resistance to rice blast (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. oryzae). The lesion and resistance phenotypes are likely to be caused by the over-accumulation of jasmonates (JAs) in the llb mutant including the JA precursor 12-oxo-phytodienoic acid. Additionally, llb shows an increased lamina inclination and enhanced early seedling growth due to elevated brassinosteroid (BR) synthesis and/or signalling. These findings show that LLB functions in the chloroplast to either directly or indirectly repress both JA- and BR-mediated responses, revealing a possible mechanism for controlling how plants allocate resources for defence and growth.


Asunto(s)
Resistencia a la Enfermedad , Magnaporthe/fisiología , Oryza/genética , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Genes Reporteros , Mutación , Oryza/crecimiento & desarrollo , Oryza/inmunología , Oxilipinas/metabolismo , Fenotipo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/inmunología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/inmunología
13.
Plant J ; 74(4): 701-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23451734

RESUMEN

Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia/metabolismo , Magnaporthe/patogenicidad , Oryza/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas Bacterianas/genética , Burkholderia/genética , Burkholderia/patogenicidad , Citoplasma/metabolismo , Vectores Genéticos , Hordeum/citología , Hordeum/genética , Hordeum/metabolismo , Interacciones Huésped-Patógeno , Hifa , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/citología , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Transporte de Proteínas , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo , Triticum/citología , Triticum/genética , Triticum/metabolismo , Virulencia
14.
New Phytol ; 202(1): 116-131, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24350905

RESUMEN

The significance of plastid terminal oxidase (PTOX) in phytoene desaturation and chloroplast function has been demonstrated using PTOX-deficient mutants, particularly in Arabidopsis. However, studies on its role in monocots are lacking. Here, we report cloning and characterization of the rice (Oryza sativa) PTOX1 gene. Using Ecotype Targeting Induced Local Lesions IN Genomes (EcoTILLING) and TILLING as forward genetic tools, we identified the causative mutation of an EMS mutant characterized by excessive tillering, semi-dwarfism and leaf variegation that corresponded to the PTOX1 gene. The tillering and semi-dwarf phenotypes of the ptox1 mutant are similar to phenotypes of known strigolactone (SL)-related rice mutants, and both phenotypic traits could be rescued by application of the synthetic SL GR24. The ptox1 mutant accumulated phytoene in white leaf sectors with a corresponding deficiency in ß-carotene, consistent with the expected function of PTOX1 in promoting phytoene desaturase activity. There was also no accumulation of the carotenoid-derived SL ent-2'-epi-5-deoxystrigol in root exudates. Elevated concentrations of auxin were detected in the mutant, supporting previous observations that SL interaction with auxin is important in shoot branching control. Our results demonstrate that PTOX1 is required for both carotenoid and SL synthesis resulting in SL-deficient phenotypes in rice.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Mutación/genética , Oryza/enzimología , Oxidorreductasas/genética , Plastidios/enzimología , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Clonación Molecular , Genes de Plantas/genética , Prueba de Complementación Genética , Marcadores Genéticos , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis/genética , Oryza/genética , Oxidorreductasas/química , Oxidorreductasas/deficiencia , Fenotipo , Filogenia , Mapeo Físico de Cromosoma , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/genética , Polimorfismo Genético , Análisis de Secuencia de Proteína
15.
Plant J ; 72(6): 894-907, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22805093

RESUMEN

Attack and counter-attack impose strong reciprocal selection on pathogens and hosts, leading to development of arms race evolutionary dynamics. Here we show that Magnaporthe oryzae avirulence gene AVR-Pik and the cognate rice resistance (R) gene Pik are highly variable, with multiple alleles in which DNA replacements cause amino acid changes. There is tight recognition specificity of the AVR-Pik alleles by the various Pik alleles. We found that AVR-Pik physically binds the N-terminal coiled-coil domain of Pik in a yeast two-hybrid assay as well as in an in planta co-immunoprecipitation assay. This binding specificity correlates with the recognition specificity between AVR and R genes. We propose that AVR-Pik and Pik are locked into arms race co-evolution driven by their direct physical interactions.


Asunto(s)
Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Alelos , Secuencia de Aminoácidos , Resistencia a la Enfermedad , Evolución Molecular , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Magnaporthe/patogenicidad , Modelos Biológicos , Mutación , Oryza/microbiología , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , Virulencia
16.
Mol Plant Pathol ; 23(6): 845-854, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35257477

RESUMEN

The plant extracellular space, including the apoplast and plasma membrane, is the initial site of plant-pathogen interactions. Pathogens deliver numerous secreted proteins, called effectors, into this region to suppress plant immunity and establish infection. Downy mildew caused by the oomycete pathogen Sclerospora graminicola (Sg) is an economically important disease of Poaceae crops including foxtail millet (Setaria italica). We previously reported the genome sequence of Sg and showed that the jacalin-related lectin (JRL) gene family has significantly expanded in this lineage. However, the biological functions of JRL proteins remained unknown. Here, we show that JRL from Sg (SgJRL) functions as an apoplastic virulence effector. We identified eight SgJRLs by protein mass spectrometry analysis of extracellular fluid from Sg-inoculated foxtail millet leaves. SgJRLs consist of a jacalin-like lectin domain and an N-terminal putative secretion signal; SgJRL expression is induced by Sg infection. Heterologous expression of three SgJRLs with N-terminal secretion signal peptides in Nicotiana benthamiana enhanced the virulence of the pathogen Phytophthora palmivora inoculated onto the same leaves. Of the three SgJRLs, SG06536 fused with green fluorescent protein (GFP) localized to the apoplastic space in N. benthamiana leaves. INF1-mediated induction of defence-related genes was suppressed by co-expression of SG06536-GFP. These findings suggest that JRLs are novel apoplastic effectors that contribute to pathogenicity by suppressing plant defence responses.


Asunto(s)
Lectinas , Phytophthora , Enfermedades de las Plantas , Lectinas de Plantas , Virulencia
17.
Mol Plant Microbe Interact ; 23(11): 1433-47, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20923351

RESUMEN

Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.


Asunto(s)
Sustitución de Aminoácidos , Bromovirus/genética , Bromovirus/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , ARN Viral/fisiología , Secuencia de Aminoácidos , Regulación Viral de la Expresión Génica/fisiología , Microscopía Electrónica , Modelos Moleculares , Mutación , Conformación Proteica , Ensamble de Virus
18.
Virus Res ; 286: 198048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32522536

RESUMEN

Gentian virus A (GeVA), a novel tombusvirus isolated from Japanese gentian, has shown only a limited ability to infect Japanese gentians under experimental conditions. In this study, temperature was found to affect the efficient multiplication of GeVA in Japanese gentians. GeVA efficiently multiplied in inoculated leaves of gentians at 18 °C but not at 23 °C. This low-temperature (18 °C)-preferred GeVA multiplication was specifically observed in Japanese gentians and Arabidopsis thaliana but not in other experimental plants, including Nicotiana benthamiana. In A. thaliana, visible defense responses, including pathogenesis-related protein 1 expression, were not detected at 23 °C. Furthermore, several A. thaliana mutants, including those defective in RNA silencing, with altered plant immunities did not allow GeVA to multiply to detectable levels at 23 °C. Taken together, these data suggest that unique interaction between GeVA and gentians/A. thaliana, which is independent of RNA silencing, may underlie the low-temperature-preferred multiplication of GeVA.


Asunto(s)
Frío , Gentiana/virología , Interacciones Microbiota-Huesped , Tombusvirus/fisiología , Replicación Viral , Arabidopsis/virología , Hojas de la Planta/virología , ARN Viral/metabolismo , Nicotiana/virología , Tombusvirus/genética , Tombusvirus/patogenicidad
19.
Virus Res ; 140(1-2): 103-11, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19059442

RESUMEN

Brome mosaic virus (BMV) and Spring beauty latent virus (SBLV) are closely related, tripartite RNA plant viruses. In Arabidopsis thaliana, BMV shows limited multiplication whereas SBLV efficiently multiplies. Such distinct multiplication abilities have been observed commonly in all Arabidopsis accessions tested. We used this model system to analyze the molecular mechanism of viral resistance in plants at the species level. Unlike SBLV, BMV multiplication was limited even in protoplasts and a reassortment assay indicated that at least viral RNA1 and/or RNA2 determine such distinct infectivities. By screening Arabidopsis mutants with altered defense responses, we found that BMV multiplies efficiently in cpr5-2 mutant plants. This mutation specifically enhanced BMV multiplication in protoplasts, which depended on the functions of RNA1 and RNA2. In the experiment using DNA vectors to express BMV replication proteins encoded by RNA1 and RNA2, BMV RNA3 accumulation in cpr5-2 protoplasts was similar to that in wild-type Col-0 protoplasts, despite significant reduction of accumulation levels of replication proteins, suggesting that cpr5-2 mutation could enhance BMV multiplication independently of increased accumulation, therefore enhanced translation and stabilization, of the replication proteins.


Asunto(s)
Arabidopsis/genética , Arabidopsis/virología , Bromovirus/genética , Interacciones Huésped-Patógeno , Proteínas de Arabidopsis/genética , Bromovirus/patogenicidad , Bromovirus/fisiología , Proteínas de la Membrana/genética , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , ARN Viral/metabolismo , Virus Reordenados/genética , Virus Reordenados/fisiología , Especificidad de la Especie , Replicación Viral
20.
Mol Plant Microbe Interact ; 17(9): 967-75, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15384487

RESUMEN

The natural variation of Arabidopsis thaliana in response to a bromovirus, Spring beauty latent virus (SBLV), was examined. Of 63 Arabidopsis accessions tested, all were susceptible when inoculated with SBLV, although there was a large degree of variation in symptom development. Most accessions, including Columbia (Col-0), were symptomless or developed only mild symptoms, but four accessions, including S96, showed severe symptoms of SBLV infection. Genetic analysis suggested that the difference in the responses of Col-0 and S96 to SBLV was controlled by a single semidominant locus. We have designated this locus SSB1 (symptom development by SBLV infection). By using genetic markers, SSB1 was mapped to chromosome IV. The patterns of distribution and accumulation of SBLV in sensitive accessions were similar to those in the insensitive accessions. In addition, symptom development in S96 by SBLV infection was critically interrupted by the presence of the NahG gene, which encodes salicylic acid (SA) hydroxylase. These data suggest that symptom development in A. thaliana controlled by SSB1 is independent of the efficiency of SBLV multiplication and is dependent on SA signaling.


Asunto(s)
Arabidopsis/virología , Bromovirus/patogenicidad , Enfermedades de las Plantas/virología , Arabidopsis/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA