Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722055

RESUMEN

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Asunto(s)
Envejecimiento , Neuronas , Animales , Envejecimiento/genética , Sistema de Transporte de Aminoácidos X-AG , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidasas , Proteínas de Caenorhabditis elegans/genética
2.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35319746

RESUMEN

For in vivo functional analysis of a protein of interest (POI), multiple transgenic strains with a POI that harbors different tags are needed but generation of these strains is still labor-intensive work. To overcome this, we have developed a versatile Drosophila toolkit with a genetically encoded single-chain variable fragment for the HA epitope tag: 'HA Frankenbody'. This system allows various analyses of HA-tagged POI in live tissues by simply crossing an HA Frankenbody fly with an HA-tagged POI fly. Strikingly, the GFP-mCherry tandem fluorescent-tagged HA Frankenbody revealed a block in autophagic flux and an accumulation of enlarged autolysosomes in the last instar larval and prepupal fat body. Mechanistically, lysosomal activity was downregulated at this stage, and endocytosis, but not autophagy, was indispensable for the swelling of lysosomes. Furthermore, forced activation of lysosomes by fat body-targeted overexpression of Mitf, the single MiTF/TFE family gene in Drosophila, suppressed the lysosomal swelling and resulted in pupal lethality. Collectively, we propose that downregulated lysosomal function in the fat body plays a role in the metamorphosis of Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Autofagia/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/metabolismo , Larva/metabolismo , Lisosomas/metabolismo
3.
Immunity ; 40(6): 924-35, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24931121

RESUMEN

Autophagy is a lysosomal degradation pathway that is important in cellular homeostasis. Prior work showed a key role for the autophagy related 5 (Atg5) in resistance to Toxoplasma gondii. Here we show that the cassette of autophagy proteins involved in the conjugation of microtubule-associated protein 1 light chain 3 (LC3) to phosphatidylethanolamine, including Atg7, Atg3, and the Atg12-Atg5-Atg16L1 complex play crucial roles in the control of T. gondii in vitro and in vivo. In contrast, pharmacologic modulation of the degradative autophagy pathway or genetic deletion of other essential autophagy genes had no substantial effects. Rather the conjugation system was required for targeting of LC3 and interferon-γ effectors onto the vacuolar membrane of T. gondii and its consequent disruption. These data suggest that the ubiquitin-like conjugation systems that reorganize intracellular membranes during canonical autophagy are necessary for proper targeting of immune effectors to the intracellular vacuole membranes utilized by pathogens.


Asunto(s)
Autofagia/inmunología , Macrófagos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/inmunología , Células HEK293 , Humanos , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/inmunología , Fosfatidiletanolaminas/química , Unión Proteica/inmunología , Proteínas/inmunología , Toxoplasmosis/parasitología , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/inmunología , Vacuolas/inmunología , Vacuolas/metabolismo , Vacuolas/parasitología
4.
J Cell Sci ; 133(21)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33077556

RESUMEN

Lysosomes are compartments for the degradation of both endocytic and autophagic cargoes. The shape of lysosomes changes with cellular degradative demands; however, there is limited knowledge about the mechanisms or significance that underlies distinct lysosomal morphologies. Here, we found an extensive tubular autolysosomal network in Drosophila abdominal muscle remodeling during metamorphosis. The tubular network transiently appeared and exhibited the capacity to degrade autophagic cargoes. The tubular autolysosomal network was uniquely marked by the autophagic SNARE protein Syntaxin17 and its formation depended on both autophagic flux and degradative function, with the exception of the Atg12 and Atg8 ubiquitin-like conjugation systems. Among ATG-deficient mutants, the efficiency of lysosomal tubulation correlated with the phenotypic severity in muscle remodeling. The lumen of the tubular network was continuous and homogeneous across a broad region of the remodeling muscle. Altogether, we revealed that the dynamic expansion of a tubular autolysosomal network synchronizes the abundant degradative activity required for developmentally regulated muscle remodeling.


Asunto(s)
Autofagia , Lisosomas , Animales , Drosophila , Músculos , Proteínas SNARE
5.
J Cell Sci ; 131(7)2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514857

RESUMEN

Macroautophagy (simply called autophagy hereafter) is an intracellular degradation mechanism that is activated by nutrient starvation. Although it is well known that starvation induces autophagosome formation in an mTORC1-dependent manner, whether starvation also regulates autophagosome or autolysosome maturation was unclear. In the present study, we succeeded in demonstrating that starvation activates autolysosome maturation in mammalian cells. We found that knockout (KO) of Rab7 (herein referring to the Rab7a isoform) caused an accumulation of a massive number of LC3-positive autolysosomes under nutrient-rich conditions, indicating that Rab7 is dispensable for autophagosome-lysosome fusion. Intriguingly, the autolysosomes that had accumulated in Rab7-KO cells matured and disappeared after starvation for a brief period (∼10 min), and we identified glutamine as an essential nutrient for autolysosome maturation. In contrast, forced inactivation of mTORC1 through treatment with its inhibitor Torin2 failed to induce autolysosome maturation, suggesting that the process is controlled by an mTORC1-independent mechanism. Since starvation-induced autolysosome maturation was also observed in wild-type cells, the nutrient-starvation-induced maturation of autolysosomes is likely to be a generalized mechanism in the same manner as starvation-induced autophagosome formation. Such multistep regulatory mechanisms would enable efficient autophagic flux during starvation.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Unión al GTP rab/genética , Animales , Perros , Técnicas de Inactivación de Genes , Glutamina/metabolismo , Células HeLa , Humanos , Lisosomas/química , Lisosomas/genética , Células de Riñón Canino Madin Darby , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Fusión de Membrana/genética , Naftiridinas/farmacología , Inanición , Proteínas de Unión a GTP rab7
6.
Nature ; 512(7514): 319-23, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25119047

RESUMEN

Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development and requires intimate contact between signal-emitting and signal-receiving cells, although little is known regarding when, where and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta. Here we show in zebrafish that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a (also known as f11r) and migrate axially across the ventral somite, where Jam2a and the Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a-Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the dorsal aorta.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Molécula A de Adhesión de Unión/metabolismo , Molécula B de Adhesión de Unión/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Aorta/citología , Aorta/crecimiento & desarrollo , Aorta/metabolismo , Diferenciación Celular , Movimiento Celular , Molécula A de Adhesión de Unión/genética , Molécula B de Adhesión de Unión/genética , Fenotipo , Receptores de Superficie Celular/genética , Somitos/citología , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
7.
Nature ; 495(7441): 389-93, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23455425

RESUMEN

Autophagy is a tightly regulated intracellular bulk degradation/recycling system that has fundamental roles in cellular homeostasis. Autophagy is initiated by isolation membranes, which form and elongate as they engulf portions of the cytoplasm and organelles. Eventually isolation membranes close to form double membrane-bound autophagosomes and fuse with lysosomes to degrade their contents. The physiological role of autophagy has been determined since its discovery, but the origin of autophagosomal membranes has remained unclear. At present, there is much controversy about the organelle from which the membranes originate--the endoplasmic reticulum (ER), mitochondria and plasma membrane. Here we show that autophagosomes form at the ER-mitochondria contact site in mammalian cells. Imaging data reveal that the pre-autophagosome/autophagosome marker ATG14 (also known as ATG14L) relocalizes to the ER-mitochondria contact site after starvation, and the autophagosome-formation marker ATG5 also localizes at the site until formation is complete. Subcellular fractionation showed that ATG14 co-fractionates in the mitochondria-associated ER membrane fraction under starvation conditions. Disruption of the ER-mitochondria contact site prevents the formation of ATG14 puncta. The ER-resident SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it to the ER-mitochondria contact site. These results provide new insight into organelle biogenesis by demonstrating that the ER-mitochondria contact site is important in autophagosome formation.


Asunto(s)
Autofagia , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Fagosomas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Mitocondrias/ultraestructura , Fagosomas/ultraestructura , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
8.
J Cell Sci ; 129(20): 3781-3791, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587839

RESUMEN

Autophagy is an intracellular degradation pathway conserved in eukaryotes. Among core autophagy-related (Atg) proteins, mammalian Atg9A is the sole multi-spanning transmembrane protein, and both of its N- and C-terminal domains are exposed to the cytoplasm. It is known that Atg9A travels through the trans-Golgi network (TGN) and the endosomal system under nutrient-rich conditions, and transiently localizes to the autophagosome upon autophagy induction. However, the significance of Atg9A trafficking for autophagosome formation remains elusive. Here, we identified sorting motifs in the N-terminal cytosolic stretch of Atg9A that interact with the adaptor protein AP-2. Atg9A with mutations in the sorting motifs could not execute autophagy and was abnormally accumulated at the recycling endosomes. The combination of defects in autophagy and Atg9A accumulation in the recycling endosomes was also found upon the knockdown of TRAPPC8, a specific subunit of the TRAPPIII complex. These results show directly that the trafficking of Atg9A through the recycling endosomes is an essential step for autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Endocitosis , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Secuencias de Aminoácidos , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/química , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas de la Membrana/química , Ratones Noqueados , Modelos Biológicos , Transporte de Proteínas , Salmonella/metabolismo , Relación Estructura-Actividad , Tirosina/metabolismo , Proteínas de Transporte Vesicular/química , Red trans-Golgi/metabolismo
9.
Nature ; 456(7219): 264-8, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18849965

RESUMEN

Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.


Asunto(s)
Autofagia/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-1beta/biosíntesis , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Proteínas Relacionadas con la Autofagia , Quimera , Colitis/inducido químicamente , Colitis/inmunología , Sulfato de Dextran/farmacología , Femenino , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación
10.
J Biochem ; 175(2): 125-131, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-37848047

RESUMEN

A transverse-tubule (T-tubule) is an invagination of the plasma membrane penetrating deep into muscle cells. An extensive membrane network of T-tubules is crucial for rapid and synchronized signal transmission from the cell surface to the entire sarcoplasmic reticulum for Ca2+ release, leading to muscle contraction. T-tubules are also indispensable for the formation and positioning of other muscle organelles. Their structure and physiological roles are relatively well established; however, the mechanisms shaping T-tubules require further elucidation. Centronuclear myopathy (CNM), an inherited muscular disorder, accompanies structural defects in T-tubules. Membrane traffic-related genes, including MTM1 (Myotubularin 1), DNM2 (Dynamin 2), and BIN1 (Bridging Integrator-1), were identified as causative genes of CNM. In addition, causative genes for other muscle diseases are also reported to be involved in the formation and maintenance of T-tubules. This review summarizes current knowledge on the mechanisms of how T-tubule formation and maintenance is regulated.


Asunto(s)
Miopatías Estructurales Congénitas , Humanos , Citosol , Miopatías Estructurales Congénitas/genética , Contracción Muscular , Membrana Celular , Músculos , Músculo Esquelético
11.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352484

RESUMEN

Transverse (T)-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain healthy skeletal and heart contractions. How the intricate T-tubule membranes are formed is not well understood, with challenges to systematically interrogate in muscle. We established the use of intact Drosophila larval body wall muscles as an ideal system to discover mechanisms that sculpt and maintain the T-tubule membrane network. A muscle-targeted genetic screen identified specific phosphoinositide lipid regulators necessary for T-tubule organization and muscle function. We show that a PI4KIIIα - Skittles/PIP5K pathway is needed for T-tubule localized PI(4)P to PI(4,5)P 2 synthesis, T-tubule organization, calcium regulation, and muscle and heart rate functions. Muscles deficient for PI4KIIIα or Amphiphysin , the homolog of human BIN1 , similarly exhibited specific loss of transversal T-tubule membranes and dyad junctions, yet retained longitudinal membranes and the associated dyads. Our results highlight the power of live muscle studies, uncovering distinct mechanisms and functions for sub-compartments of the T-tubule network relevant to human myopathy. Summary: T-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain skeletal and heart contractions. Fujita et al . establish genetic screens and assays in intact Drosophila muscles that uncover PI(4,5)P 2 regulation critical for T-tubule maintenance and function. Key Findings: PI4KIIIα is required for muscle T-tubule formation and larval mobility. A PI4KIIIα-Sktl pathway promotes PI(4)P and PI(4,5)P 2 function at T-tubules. PI4KIIIα is necessary for calcium dynamics and transversal but not longitudinal dyads. Disruption of PI(4,5)P 2 function in fly heart leads to fragmented T-tubules and abnormal heart rate.

12.
Am J Pathol ; 180(2): 517-25, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22265049

RESUMEN

Autophagy is a highly conserved bulk protein degradation pathway involved in cellular homeostasis. Although emerging evidence indicates involvement of autophagy in various conditions, efforts to clarify the role of autophagy in renal tubules are beginning to be elucidated. In the present study, we examined the hypothesis that autophagy guards against acute kidney injury (AKI) by modulating several deteriorative pathways that lead to tubular cell death using a cisplatin-induced model of AKI. Cisplatin treatment of GFP-LC3 (green fluorescent protein-microtubule-associated protein 1 light chain 3) transgenic mice induced autophagy in kidney proximal tubules in a time-dependent manner. Proximal tubule-specific autophagy-deficient mice exhibited more severe cisplatin-induced AKI than did control mice, as assessed via kidney function and morphologic findings. In addition, cisplatin induced more severe DNA damage and p53 activation, concomitant with an increase in apoptotic cell number, and a massive accumulation of protein aggregates in autophagy-deficient proximal tubules. Cisplatin treatment significantly increased reactive oxygen species-producing damaged mitochondria in immortalized autophagy-deficient proximal tubular cells when compared with autophagy-retrieved control cells. In conclusion, autophagy guards kidney proximal tubules against AKI, possibly by alleviating DNA damage and reactive oxygen species production and by eliminating toxic protein aggregates. Enhancing autophagy may provide a novel therapeutic option to minimize AKI.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antineoplásicos/toxicidad , Autofagia/fisiología , Cisplatino/toxicidad , Túbulos Renales Proximales/fisiopatología , Lesión Renal Aguda/fisiopatología , Animales , Apoptosis/fisiología , Daño del ADN/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo
13.
Int J Cancer ; 131(3): 548-57, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21858812

RESUMEN

Multikinase inhibitor sorafenib inhibits proliferation and angiogenesis of tumors by suppressing the Raf/MEK/ERK signaling pathway and VEGF receptor tyrosine kinase. It significantly prolongs median survival of patients with advanced hepatocellular carcinoma (HCC) but the response is disease-stabilizing and cytostatic rather than one of tumor regression. To examine the mechanisms underlying the relative resistance in HCC, we investigated the role of autophagy, an evolutionarily conserved self-digestion pathway, in hepatoma cells in vitro and in vivo. Sorafenib treatment led to accumulation of autophagosomes as evidenced by conversion from LC3-I to LC3-II observed by immunoblot in Huh7, HLF and PLC/PRF/5 cells. This induction was due to activation of autophagic flux, as there was further increase in LC3-II expression upon treatment with lysosomal inhibitors, clear decline of the autophagy substrate p62, and an mRFP-GFP-LC3 fluorescence change in sorafenib-treated hepatoma cells. Sorafenib inhibited the mammalian target of rapamycin complex 1 and its inhibition led to accumulation of LC3-II. Pharmacological inhibition of autophagic flux by chloroquine increased apoptosis and decreased cell viability in hepatoma cells. siRNA-mediated knockdown of the ATG7 gene also sensitized hepatoma cells to sorafenib. Finally, sorafenib induced autophagy in Huh7 xenograft tumors in nude mice and coadministration with chloroquine significantly suppressed tumor growth compared with sorafenib alone. In conclusion, sorafenib administration induced autophagosome formation and enhanced autophagic activity, which conferred a survival advantage to hepatoma cells. Concomitant inhibition of autophagy may be an attractive strategy for unlocking the antitumor potential of sorafenib in HCC.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Bencenosulfonatos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Piridinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Resistencia a Antineoplásicos , Humanos , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteína Sequestosoma-1 , Sorafenib , Serina-Treonina Quinasas TOR , Enzimas Activadoras de Ubiquitina/biosíntesis , Enzimas Activadoras de Ubiquitina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Virol ; 85(24): 13185-94, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21994453

RESUMEN

Hepatitis C virus (HCV) is a major cause of chronic liver diseases. A high risk of chronicity is the major concern of HCV infection, since chronic HCV infection often leads to liver cirrhosis and hepatocellular carcinoma. Infection with the HCV genotype 1 in particular is considered a clinical risk factor for the development of hepatocellular carcinoma, although the molecular mechanisms of the pathogenesis are largely unknown. Autophagy is involved in the degradation of cellular organelles and the elimination of invasive microorganisms. In addition, disruption of autophagy often leads to several protein deposition diseases. Although recent reports suggest that HCV exploits the autophagy pathway for viral propagation, the biological significance of the autophagy to the life cycle of HCV is still uncertain. Here, we show that replication of HCV RNA induces autophagy to inhibit cell death. Cells harboring an HCV replicon RNA of genotype 1b strain Con1 but not of genotype 2a strain JFH1 exhibited an incomplete acidification of the autolysosome due to a lysosomal defect, leading to the enhanced secretion of immature cathepsin B. The suppression of autophagy in the Con1 HCV replicon cells induced severe cytoplasmic vacuolation and cell death. These results suggest that HCV harnesses autophagy to circumvent the harmful vacuole formation and to maintain a persistent infection. These findings reveal a unique survival strategy of HCV and provide new insights into the genotype-specific pathogenicity of HCV.


Asunto(s)
Autofagia , Muerte Celular , Hepacivirus/patogenicidad , Vacuolas/metabolismo , Replicación Viral , Catepsina B/metabolismo , Línea Celular , Supervivencia Celular , Hepacivirus/crecimiento & desarrollo , Humanos , Concentración de Iones de Hidrógeno , Immunoblotting , Lisosomas/química , Lisosomas/metabolismo , Microscopía Electrónica , Microscopía Fluorescente
15.
Proc Natl Acad Sci U S A ; 106(49): 20842-6, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19926846

RESUMEN

Microbial nucleic acids are critical for the induction of innate immune responses, a host defense mechanism against infection by microbes. Recent studies have indicated that double-stranded DNA (dsDNA) induces potent innate immune responses via the induction of type I IFN (IFN) and IFN-inducible genes. However, the regulatory mechanisms underlying dsDNA-triggered signaling are not fully understood. Here we show that the translocation and assembly of the essential signal transducers, stimulator of IFN genes (STING) and TANK-binding kinase 1 (TBK1), are required for dsDNA-triggered innate immune responses. After sensing dsDNA, STING moves from the endoplasmic reticulum (ER) to the Golgi apparatus and finally reaches the cytoplasmic punctate structures to assemble with TBK1. The addition of an ER-retention signal to the C terminus of STING dampens its ability to induce antiviral responses. We also show that STING co-localizes with the autophagy proteins, microtubule-associated protein 1 light chain 3 (LC3) and autophagy-related gene 9a (Atg9a), after dsDNA stimulation. The loss of Atg9a, but not that of another autophagy-related gene (Atg7), greatly enhances the assembly of STING and TBK1 by dsDNA, leading to aberrant activation of the innate immune response. Hence Atg9a functions as a regulator of innate immunity following dsDNA stimulation as well as an essential autophagy protein. These results demonstrate that dynamic membrane traffic mediates the sequential translocation and assembly of STING, both of which are essential processes required for maximal activation of the innate immune response triggered by dsDNA.


Asunto(s)
ADN/farmacología , Inmunidad Innata/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Embrión de Mamíferos/citología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Transporte Vesicular
16.
Cell Microbiol ; 12(8): 1108-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20180800

RESUMEN

Yersinia pseudotuberculosis is able to replicate inside macrophages. However, the intracellular trafficking of the pathogen after its entry into the macrophage remains poorly understood. Using in vitro infected bone marrow-derived macrophages, we show that Y. pseudotuberculosis activates the autophagy pathway. Host cell autophagosomes subverted by bacteria do not become acidified and sustain bacteria replication. Moreover, we report that autophagy inhibition correlated with bacterial trafficking inside an acidic compartment. This study indicates that Y. pseudotuberculosis hijacks the autophagy pathway for its replication and also opens up new opportunities for deciphering the molecular basis of the host cell signalling response to intracellular Yersinia infection.


Asunto(s)
Autofagia , Macrófagos/microbiología , Fagosomas/microbiología , Yersinia pseudotuberculosis/patogenicidad , Animales , Femenino , Evasión Inmune , Ratones , Ratones Endogámicos BALB C , Yersinia pseudotuberculosis/crecimiento & desarrollo
17.
J Biol Chem ; 284(47): 32602-9, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19783656

RESUMEN

A single nucleotide polymorphism in Atg16L1, an autophagy-related gene (ATG), is a risk factor for Crohn disease, a major form of chronic inflammatory bowel disease. However, it is still unknown how the Atg16L1 variant contributes to disease development. The Atg16L1 protein possesses a C-terminal WD repeat domain whose function is entirely unknown, and the Crohn disease-associated mutation (T300A) is within this domain. To elucidate the function of the WD repeat domain, we established an experimental system in which a WD repeat domain mutant of Atg16L1 is stably expressed in Atg16L1-deficient mouse embryonic fibroblasts. Using the system, we show that the Atg16L1 complex forms a dimeric complex and that the total Atg16L1 protein level is strictly maintained, possibly by the ubiquitin proteasome system. Furthermore, we show that an Atg16L1 WD repeat domain deletion and the T300A mutant have little impact on canonical autophagy and autophagy against Salmonella enterica serovar Typhimurium. Therefore, we propose that Atg16L1 T300A is differentially involved in Crohn disease and canonical autophagy.


Asunto(s)
Proteínas Portadoras/metabolismo , Enfermedad de Crohn/metabolismo , Fibroblastos/metabolismo , Animales , Autofagia , Proteínas Relacionadas con la Autofagia , Cromatografía en Gel , Humanos , Ratones , Microscopía Fluorescente/métodos , Modelos Genéticos , Complejo de la Endopetidasa Proteasomal/química , Estructura Terciaria de Proteína , Salmonella enterica/metabolismo , Ubiquitina/química
18.
J Cell Biol ; 218(6): 2035-2050, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31072826

RESUMEN

The Rab family of small GTPases comprises the largest number of proteins (∼60 in mammals) among the regulators of intracellular membrane trafficking, but the precise function of many Rabs and the functional redundancy and diversity of Rabs remain largely unknown. Here, we generated a comprehensive collection of knockout (KO) MDCK cells for the entire Rab family. We knocked out closely related paralogs simultaneously (Rab subfamily knockout) to circumvent functional compensation and found that Rab1A/B and Rab5A/B/C are critical for cell survival and/or growth. In addition, we demonstrated that Rab6-KO cells lack the basement membrane, likely because of the inability to secrete extracellular matrix components. Further analysis revealed the general requirement of Rab6 for secretion of soluble cargos. Transport of transmembrane cargos to the plasma membrane was also significantly delayed in Rab6-KO cells, but the phenotype was relatively mild. Our Rab-KO collection, which shares the same background, would be a valuable resource for analyzing a variety of membrane trafficking events.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/citología , Guanosina Trifosfato/metabolismo , Complejos Multiproteicos/metabolismo , Orgánulos/fisiología , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Animales , Perros , Células Epiteliales/metabolismo , Técnicas de Inactivación de Genes/métodos , Células HEK293 , Humanos , Membranas Intracelulares , Células de Riñón Canino Madin Darby , Fenotipo , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
19.
FEBS J ; 275(4): 788-98, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18215164

RESUMEN

Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.


Asunto(s)
Fibroblastos/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo , Manosa/metabolismo , Transducción de Señal , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Embrión de Mamíferos/citología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Glicoproteínas/metabolismo , Glicósido Hidrolasas/metabolismo , Glicosilación/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Macrólidos/farmacología , Manosa-6-Fosfato Isomerasa/deficiencia , Manosa-6-Fosfato Isomerasa/genética , Ratones , Microscopía Fluorescente , Modelos Biológicos , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Swainsonina/farmacología
20.
Elife ; 62017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28063257

RESUMEN

Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.


Asunto(s)
Autofagia/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Músculos/metabolismo , Proteína de Unión al GTP rab2/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Lisosomas/metabolismo , Fusión de Membrana , Fagosomas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rab2/antagonistas & inhibidores , Proteína de Unión al GTP rab2/genética , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA