Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell ; 152(5): 1106-18, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452856

RESUMEN

In the mammalian circadian clockwork, CRY1 and CRY2 repressor proteins are regulated by posttranslational modifications for temporally coordinated transcription of clock genes. Previous studies revealed that FBXL3, an F-box-type E3 ligase, ubiquitinates CRYs and mediates their degradation. Here, we found that FBXL21 also ubiquitinates CRYs but counteracts FBXL3. Fbxl21(-/-) mice exhibited normal periodicity of wheel-running rhythms with compromised organization of daily activities, while an extremely long-period phenotype of Fbxl3(-/-) mice was attenuated in Fbxl3/Fbxl21 double-knockout mice. The double knockout destabilized the behavioral rhythms progressively and sometimes elicited arrhythmicity. Surprisingly, FBXL21 stabilized CRYs and antagonized the destabilizing action by FBXL3. Predominantly cytosolic distribution of FBXL21 contrasts with nuclear localization of FBXL3. These results emphasize the physiological importance of antagonizing actions between FBXL21 and FBXL3 on CRYs, and their combined actions at different subcellular locations stabilize oscillation of the circadian clock.


Asunto(s)
Relojes Circadianos , Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Secuencia de Aminoácidos , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Proteínas F-Box/genética , Fibroblastos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Complejos Multiproteicos , Alineación de Secuencia , Ubiquitinación
2.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805270

RESUMEN

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas CLOCK , Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/química , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , ADN/metabolismo , Células HEK293 , Mutación , Células 3T3 NIH , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fosforilación , Unión Proteica , Dominios Proteicos
3.
EMBO Rep ; 23(10): e53813, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35993198

RESUMEN

Loss-of-function mutations in Drosophila lethal(3)malignant brain tumor [l(3)mbt] cause ectopic expression of germline genes and brain tumors. Loss of L(3)mbt function in ovarian somatic cells (OSCs) aberrantly activates germ-specific piRNA amplification and leads to infertility. However, the underlying mechanism remains unclear. Here, ChIP-seq for L(3)mbt in cultured OSCs and RNA-seq before and after L(3)mbt depletion shows that L(3)mbt genomic binding is not necessarily linked to gene regulation and that L(3)mbt controls piRNA pathway genes in multiple ways. Lack of known L(3)mbt co-repressors, such as Lint-1, has little effect on the levels of piRNA amplifiers. Identification of L(3)mbt interactors in OSCs and subsequent analysis reveals CG2662 as a novel co-regulator of L(3)mbt, termed "L(3)mbt interactor in OSCs" (Lint-O). Most of the L(3)mbt-bound piRNA amplifier genes are also bound by Lint-O in a similar fashion. Loss of Lint-O impacts the levels of piRNA amplifiers, similar to the lack of L(3)mbt. The lint-O-deficient flies exhibit female sterility and tumorous brains. Thus, L(3)mbt and its novel co-suppressor Lint-O cooperate in suppressing target genes to maintain homeostasis in the ovary and brain.


Asunto(s)
Neoplasias Encefálicas , Proteínas de Drosophila , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas Co-Represoras/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Homeostasis , Ovario/metabolismo , ARN Interferente Pequeño/genética
4.
Proc Natl Acad Sci U S A ; 117(20): 10888-10896, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32354999

RESUMEN

Casein kinase 1 (CK1) plays a central role in regulating the period of the circadian clock. In mammals, PER2 protein abundance is regulated by CK1-mediated phosphorylation and proteasomal degradation. On the other hand, recent studies have questioned whether the degradation of the core circadian machinery is a critical step in clock regulation. Prior cell-based studies found that CK1 phosphorylation of PER2 at Ser478 recruits the ubiquitin E3 ligase ß-TrCP, leading to PER2 degradation. Creation of this phosphodegron is regulated by a phosphoswitch that is also implicated in temperature compensation. However, in vivo evidence that this phosphodegron influences circadian period is lacking. Here, we generated and analyzed PER2-Ser478Ala knock-in mice. The mice showed longer circadian period in behavioral analysis. Molecularly, mutant PER2 protein accumulated in both the nucleus and cytoplasm of the mouse liver, while Per2 messenger RNA (mRNA) levels were minimally affected. Nuclear PER1, CRY1, and CRY2 proteins also increased, probably due to stabilization of PER2-containing complexes. In mouse embryonic fibroblasts derived from PER2-Ser478Ala::LUC mice, three-phase decay and temperature compensation of the circadian period was perturbed. These data provide direct in vivo evidence for the importance of phosphorylation-regulated PER2 stability in the circadian clock and validate the phosphoswitch in a mouse model.


Asunto(s)
Relojes Circadianos/fisiología , Mutación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Animales , Conducta Animal , Quinasa de la Caseína I/metabolismo , Núcleo Celular/metabolismo , Ritmo Circadiano/fisiología , Femenino , Regulación de la Expresión Génica , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Fosforilación , ARN Mensajero/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(10): 4651-4660, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765521

RESUMEN

Color discrimination in the vertebrate retina is mediated by a combination of spectrally distinct cone photoreceptors, each expressing one of multiple cone opsins. The opsin genes diverged early in vertebrate evolution into four classes maximally sensitive to varying wavelengths of light: UV (SWS1), blue (SWS2), green (RH2), and red (LWS) opsins. Although the tetrachromatic cone system is retained in most nonmammalian vertebrate lineages, the transcriptional mechanism underlying gene expression of the cone opsins remains elusive, particularly for SWS2 and RH2 opsins, both of which have been lost in the mammalian lineage. In zebrafish, which have all four cone subtypes, rh2 opsin gene expression depends on a homeobox transcription factor, sine oculis homeobox 7 (Six7). However, the six7 gene is found only in the ray-finned fish lineage, suggesting the existence of another evolutionarily conserved transcriptional factor(s) controlling rh2 opsin expression in vertebrates. Here, we found that the reduced rh2 expression caused by six7 deficiency was rescued by forced expression of six6b, which is a six7-related transcription factor conserved widely among vertebrates. The compensatory role of six6b was reinforced by ChIP-sequencing analysis, which revealed a similar pattern of Six6b- and Six7-binding sites within and near the cone opsin genes. TAL effector nuclease-induced genetic ablation of six6b and six7 revealed that they coordinately regulate SWS2 opsin gene expression. Mutant larvae deficient for these transcription factors showed severely impaired visually driven foraging behavior. These results demonstrate that in zebrafish, six6b and six7 govern expression of the SWS2 and RH2 opsins responsible for middle-wavelength sensitivity, which would be physiologically important for daylight vision.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Opsinas/metabolismo , Opsinas de Bastones/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Color , Visión de Colores , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Opsinas/genética , Opsinas de Bastones/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Genes Dev ; 28(10): 1101-10, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24831701

RESUMEN

Daily behavioral rhythms in mammals are governed by the central circadian clock, located in the suprachiasmatic nucleus (SCN). The behavioral rhythms persist even in constant darkness, with a stable activity time due to coupling between two oscillators that determine the morning and evening activities. Accumulating evidence supports a prerequisite role for Ca(2+) in the robust oscillation of the SCN, yet the underlying molecular mechanism remains elusive. Here, we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity is essential for not only the cellular oscillation but also synchronization among oscillators in the SCN. A kinase-dead mutation in mouse CaMKIIα weakened the behavioral rhythmicity and elicited decoupling between the morning and evening activity rhythms, sometimes causing arrhythmicity. In the mutant SCN, the right and left nuclei showed uncoupled oscillations. Cellular and biochemical analyses revealed that Ca(2+)-calmodulin-CaMKII signaling contributes to activation of E-box-dependent gene expression through promoting dimerization of circadian locomotor output cycles kaput (CLOCK) and brain and muscle Arnt-like protein 1 (BMAL1). These results demonstrate a dual role of CaMKII as a component of cell-autonomous clockwork and as a synchronizer integrating circadian behavioral activities.


Asunto(s)
Relojes Biológicos/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ritmo Circadiano/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Conducta Animal , Relojes Biológicos/efectos de los fármacos , Proteínas CLOCK/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Ritmo Circadiano/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Células 3T3 NIH , Neuronas/enzimología , Fosforilación , Ratas , Transducción de Señal
7.
Genes Dev ; 28(6): 548-60, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24637114

RESUMEN

The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock "gated" pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic Clock(Δ19) mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis.


Asunto(s)
Relojes Circadianos/fisiología , Regulación de la Expresión Génica/fisiología , Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fibrosis Pulmonar/metabolismo , Animales , Anticarcinógenos/farmacología , Bleomicina/farmacología , Relojes Circadianos/genética , Elementos E-Box/genética , Femenino , Homeostasis , Isotiocianatos/farmacología , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Sulfóxidos
9.
Proc Natl Acad Sci U S A ; 115(14): 3646-3651, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555767

RESUMEN

Daily rhythms of behaviors and physiologies are generated by the circadian clock, which is composed of clock genes and the encoded proteins forming transcriptional/translational feedback loops (TTFLs). The circadian clock is a self-sustained oscillator and flexibly responds to various time cues to synchronize with environmental 24-h cycles. However, the key molecule that transmits cellular stress to the circadian clockwork is unknown. Here we identified apoptosis signal-regulating kinase (ASK), a member of the MAPKKK family, as an essential mediator determining the circadian period and phase of cultured cells in response to osmotic changes of the medium. The physiological impact of ASK signaling was demonstrated by a response of the clock to changes in intracellular redox states. Intriguingly, the TTFLs drive rhythmic expression of Ask genes, indicating ASK-mediated association of the TTFLs with intracellular redox. In behavioral analysis, Ask1, Ask2, and Ask3 triple-KO mice exhibited compromised light responses of the circadian period and phase in their activity rhythms. LC-MS/MS-based proteomic analysis identified a series of ASK-dependent and osmotic stress-responsive phosphorylations of proteins, among which CLOCK, a key component of the molecular clockwork, was phosphorylated at Thr843 or Ser845 in the carboxyl-terminal region. These findings reveal the ASK-dependent stress response as an underlying mechanism of circadian clock flexibility.


Asunto(s)
Relojes Circadianos/fisiología , MAP Quinasa Quinasa Quinasa 5/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Presión Osmótica , Animales , Conducta Animal , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Fosforilación , Procesamiento Proteico-Postraduccional , Proteómica , Transducción de Señal
10.
J Lipid Res ; 61(4): 570-579, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32102801

RESUMEN

Steroids that contain a 3-hydroxyl group (3-OH steroids) are widely distributed in nature. During analysis with ESI-MS, they easily become dehydrated while in the protonated form, resulting in the production of several precursor ions and leading to low sensitivity of detection. To address this analytical challenge, here, we developed a method for the quantitation of 3-OH steroids by LC-MS/MS coupled with post-column addition of lithium (Li) ions to the mobile phase. The Li ion has a high affinity for the keto group of steroids, stabilizing their structures during ionization and permitting detection of analytes exclusively as the lithiated form. This not only improved the intensities of the precursor ions, but also promoted the formation of typical lithiated fragment ions. This improvement made the quantitation by multiple reaction monitoring more sensitive and reliable, as evidenced by 1.53-188 times enhanced detection sensitivity of 13 steroids that contained at least one keto and two hydroxyl groups or one keto and one 5-olefinic double bond, among 16 different 3-OH steroids. We deployed our newly developed method for profiling steroids in mouse brain tissue and identified six steroids in one tissue sample. Among these, 16-hydroxyestrone, tetrahydrocorticosterone, and 17α-hydroxypregnenolone were detected for the first time in the mouse brain. In summary, the method described here enables the detection of lithiated steroids by LC-MS/MS, including three 3-OH steroids not previously reported in the mouse brain. We anticipate that this new method may allow the determination of 3-OH steroids in different brain regions.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Litio/química , Esteroides/análisis , Esteroides/química , Espectrometría de Masas en Tándem/métodos , Animales , Ratones , Ratones Endogámicos C57BL
11.
Nucleic Acids Res ; 42(9): 5765-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24728990

RESUMEN

Post-translational modifications (such as ubiquitination) of clock proteins are critical in maintaining the precision and robustness of the evolutionarily conserved circadian clock. Ubiquitination of the core clock transcription factor BMAL1 (brain and muscle Arnt-like 1) has recently been reported. However, it remains unknown whether BMAL1 ubiquitination affects circadian pacemaking and what ubiquitin ligase(s) is involved. Here, we show that activating UBE3A (by expressing viral oncogenes E6/E7) disrupts circadian oscillations in mouse embryonic fibroblasts, measured using PER2::Luc dynamics, and rhythms in endogenous messenger ribonucleic acid and protein levels of BMAL1. Over-expression of E6/E7 reduced the level of BMAL1, increasing its ubiquitination and proteasomal degradation. UBE3A could bind to and degrade BMAL1 in a ubiquitin ligase-dependent manner. This occurred both in the presence and absence of E6/E7. We provide in vitro (knockdown/over-expression in mammalian cells) and in vivo (genetic manipulation in Drosophila) evidence for an endogenous role of UBE3A in regulating circadian dynamics and rhythmic locomotor behaviour. Together, our data reveal an essential and conserved role of UBE3A in the regulation of the circadian system in mammals and flies and identify a novel mechanistic link between oncogene E6/E7-mediated cell transformation and circadian (BMAL1) disruption.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Animales , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Expresión Génica , Regulación de la Expresión Génica , Ratones , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
12.
J Biol Chem ; 289(3): 1629-38, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24280221

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neurons. Here we show that the basic leucine zipper transcription factor NFIL3 (also called E4BP4) confers neuroprotection in models of ALS. NFIL3 is up-regulated in primary neurons challenged with neurotoxic insults and in a mouse model of ALS. Overexpression of NFIL3 attenuates excitotoxic neuronal damage and protects neurons against neurodegeneration in a cell-based ALS model. Conversely, reduction of NFIL3 exacerbates neuronal demise in adverse conditions. Transgenic neuronal expression of NFIL3 in ALS mice delays disease onset and attenuates motor axon and neuron degeneration. These results suggest that NFIL3 plays a neuroprotective role in neurons and constitutes a potential therapeutic target for neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Axones/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neuronas Motoras/metabolismo , Fármacos Neuroprotectores/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/patología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología
13.
Proc Biol Sci ; 282(1812): 20150659, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26180064

RESUMEN

Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Opsinas de Bastones/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Reacción en Cadena en Tiempo Real de la Polimerasa , Opsinas de Bastones/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
Photochem Photobiol Sci ; 14(11): 1991-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26411960

RESUMEN

In the chicken pineal gland, light stimuli trigger signaling pathways mediated by two different subtypes, Gt and G11. These G proteins may be activated by any of the three major pineal opsins, pinopsin, OPN4-1 and OPN4-2, but biochemical evidence for the coupling has been missing except for functional coupling between pinopsin and Gt. Here we investigated the relative expression levels and the functional difference among the three pineal opsins. In the chicken pineal gland, the pinopsin mRNA level was significantly more abundant than the others, of which the OPN4-2 mRNA level was higher than that of OPN4-1. In G protein activation assays, Gt was strongly activated by pinopsin in a light-dependent manner, being consistent with previous studies, and weakly activated by OPN4-2. Unexpectedly, illuminated OPN4-2 more efficiently activated G protein(s) that was endogenously expressed in HEK293T cells in culture. On the other hand, Gq, the closest analogue of G11, was activated only by OPN4-1 although the activity was relatively weak under these conditions. These results suggest that OPN4-1 and OPN4-2 couple with Gq and Gt, respectively. Two melanopsins, OPN4-1 and OPN4-2, appear to have acquired mutually different functions through the evolution.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Luz , Opsinas de Bastones/metabolismo , Animales , Pollos , Activación Enzimática/efectos de la radiación , Glándula Pineal/química , Glándula Pineal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Opsinas de Bastones/genética
15.
Clin Calcium ; 25(2): 201-8, 2015 Feb.
Artículo en Japonés | MEDLINE | ID: mdl-25634045

RESUMEN

Circadian clock generates a variety of biological rhythms such as sleep/wake cycles and blood hormone rhythms. The circadian clock also bolsters daily mental activities. In fact, abnormalities of the circadian rhythms are found in several neurological disorders. The circadian clock has two important functions: (i) a cell-autonomous oscillatory function and (ii) a phase-adjusting function that synchronizes the clock oscillation with environmental cycling conditions such as light/dark cycle. Behavioral rhythms are controlled by the central clock in hypothalamic suprachiasmatic nucleus (SCN). The central clock orchestrates peripheral clocks in the other tissues via neuronal connection and/or actions of humoral factors. The molecular mechanism of the cell-autonomous clock is based on transcriptional feedback regulation of clock genes by their encoded products. Ca2+ is essential for not only the light response of the clock but also the cell autonomous oscillation mechanism. This article provides an overview of recent progress in studies of Ca2+-dependent regulatory mechanism of the molecular clockwork.


Asunto(s)
Calcio/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Cognición/fisiología , Núcleo Supraquiasmático/metabolismo , Animales , Calmodulina/metabolismo , Humanos
16.
J Neurosci ; 33(9): 3834-43, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447595

RESUMEN

Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.


Asunto(s)
Movimiento/fisiología , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Rombencéfalo/citología , Conducta Estereotipada/fisiología , Factores de Edad , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Biofisica , Calcio/metabolismo , Embrión no Mamífero , Femenino , Masculino , Microscopía Confocal , Morfolinos/farmacología , Movimiento/efectos de los fármacos , Movimiento/efectos de la radiación , Células Musculares/efectos de los fármacos , Células Musculares/efectos de la radiación , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Vías Nerviosas/efectos de la radiación , Opsinas/química , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Rombencéfalo/fisiología , Conducta Estereotipada/efectos de los fármacos , Conducta Estereotipada/efectos de la radiación , Factores de Tiempo , Pez Cebra
17.
Front Neuroendocrinol ; 34(3): 179-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23685042

RESUMEN

Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.


Asunto(s)
17-alfa-Hidroxipregnenolona/análogos & derivados , Encéfalo/metabolismo , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Glándula Pineal/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Animales , Encéfalo/fisiología , Corticosterona/fisiología , Femenino , Luz , Masculino , Melatonina/fisiología , Actividad Motora/fisiología , Prolactina/fisiología , Salamandridae
18.
EMBO Rep ; 13(5): 455-61, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22441692

RESUMEN

The posttranslational regulation of mammalian clock proteins has been assigned a time-keeping function, but seems to have more essential roles. Here we show that c-Jun N-terminal kinase (JNK), identified by inhibitor screening of BMAL1 phosphorylation at Ser 520/Thr 527/Ser 592, confers dynamic regulation on the clock. Knockdown of JNK1 and JNK2 abrogates BMAL1 phosphorylation and lengthens circadian period in fibroblasts. Mice deficient for neuron-specific isoform JNK3 have altered behavioural rhythms, with longer free-running period and compromised phase shifts to light. The locomotor rhythms are insensitive to intensity variance of constant light, deviating from Aschoff's rule. Thus, JNK regulates a core characteristic of the circadian clock by controlling the oscillation speed and the phase in response to light.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Línea Celular , Relojes Circadianos/fisiología , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Mamíferos/metabolismo , Mamíferos/fisiología , Ratones , Proteína Quinasa 10 Activada por Mitógenos/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Actividad Motora/fisiología , Células 3T3 NIH , Fosforilación/genética , Fosforilación/fisiología , Núcleo Supraquiasmático/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(12): 4864-9, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383147

RESUMEN

The circadian clock is phase-delayed or -advanced by light when given at early or late subjective night, respectively. Despite the importance of the time-of-day-dependent phase responses to light, the underlying molecular mechanism is poorly understood. Here, we performed a comprehensive analysis of light-inducible genes in the chicken pineal gland, which consists of light-sensitive clock cells representing a prototype of the clock system. Light stimulated expression of 62 genes and 40 ESTs by >2.5-fold, among which genes responsive to the heat shock and endoplasmic reticulum stress as well as their regulatory transcription factors heat shock factor (HSF)1, HSF2, and X-box-binding protein 1 (XBP1) were strongly activated when a light pulse was given at late subjective night. In contrast, the light pulse at early subjective night caused prominent induction of E4bp4, a key regulator in the phase-delaying mechanism of the pineal clock, along with activation of a large group of cholesterol biosynthetic genes that are targets of sterol regulatory element-binding protein (SREBP) transcription factor. We found that the light pulse stimulated proteolytic formation of active SREBP-1 that, in turn, transactivated E4bp4 expression, linking SREBP with the light-input pathway of the pineal clock. As an output of light activation of cholesterol biosynthetic genes, we found light-stimulated pineal production of a neurosteroid, 7α-hydroxypregnenolone, demonstrating a unique endocrine function of the pineal gland. Intracerebroventricular injection of 7α-hydroxypregnenolone activated locomotor activities of chicks. Our study on the genome-wide gene expression analysis revealed time-of-day-dependent light activation of signaling pathways and provided molecular connection between gene expression and behavior through neurosteroid release from the pineal gland.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Luz , Transducción de Señal/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , 17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxipregnenolona/farmacología , Animales , Secuencia de Bases , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Pollos , Colesterol/biosíntesis , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/efectos de la radiación , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Estudio de Asociación del Genoma Completo , Locomoción/efectos de los fármacos , Locomoción/fisiología , Locomoción/efectos de la radiación , Masculino , Datos de Secuencia Molecular , Factores de Transcripción del Factor Regulador X , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
20.
Neuroendocrinology ; 98(2): 97-105, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23797037

RESUMEN

The central and peripheral nervous systems have the capacity of synthesizing steroids de novo from cholesterol, the so-called 'neurosteroids'. De novo synthesis of neurosteroids from cholesterol appears to be a conserved property across the subphylum vertebrata. Until recently, it was generally believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival by suppressing the activity of caspase-3, a crucial mediator of apoptosis during cerebellar development. This review is an updated summary of the biosynthesis and biological actions of pineal neurosteroids.


Asunto(s)
Aves/fisiología , Neurotransmisores/biosíntesis , Neurotransmisores/fisiología , Glándula Pineal/metabolismo , Animales , Animales Domésticos , Supervivencia Celular/efectos de los fármacos , Coturnix , Actividad Motora/efectos de los fármacos , Neurotransmisores/farmacología , Células de Purkinje/efectos de los fármacos , Células de Purkinje/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA