Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Med ; 21(1): 386, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798633

RESUMEN

BACKGROUND: We previously demonstrated that CD34 + cell transplantation in animals healed intractable fractures via osteogenesis and vasculogenesis; we also demonstrated the safety and efficacy of this cell therapy in an earlier phase I/II clinical trial conducted on seven patients with fracture nonunion. Herein, we present the results of a phase III clinical trial conducted to confirm the results of the previous phase studies using a larger cohort of patients. METHODS: CD34 + cells were mobilized via administration of granulocyte colony-stimulating factor, harvested using leukapheresis, and isolated using magnetic cell sorting. Autologous CD34 + cells were transplanted in 15 patients with tibia nonunion and 10 patients with femur nonunion, who were followed up for 52 weeks post transplantation. The main outcome was a reduction in time to heal the tibia in nonunion patients compared with that in historical control patients. We calculated the required number of patients as 15 based on the results of the phase I/II study. An independent data monitoring committee performed the radiographic assessments. Adverse events and medical device failures were recorded. RESULTS: All fractures healed during the study period. The time to radiological fracture healing was 2.8 times shorter in patients with CD34 + cell transplantation than in the historical control group (hazard ratio: 2.81 and 95% confidence interval 1.16-6.85); moreover, no safety concerns were observed. CONCLUSIONS: Our findings strongly suggest that autologous CD34 + cell transplantation is a novel treatment option for fracture nonunion. TRIAL REGISTRATION: UMIN-CTR, UMIN000022814. Registered on 22 June 2016.


Asunto(s)
Fracturas Óseas , Fracturas no Consolidadas , Humanos , Trasplante de Células , Curación de Fractura , Fracturas Óseas/terapia , Fracturas no Consolidadas/terapia , Factor Estimulante de Colonias de Granulocitos , Trasplante Autólogo , Resultado del Tratamiento
2.
Curr Issues Mol Biol ; 44(11): 5562-5578, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36354689

RESUMEN

In this study, we examined the proliferation capability and osteogenic and chondrogenic differentiation potential of non-hypertrophic nonunion cells (NHNCs), and the effect of Escherichia coli-derived BMP-2 (E-BMP-2) on them. We enrolled five patients with non-hypertrophic nonunion. NHNCs isolated from nonunion tissue sampled during surgery were cultured, passaged, counted every 14 days, and analyzed. NHNCs were homogenous fibroblastic adherent cells and long-lived through at least 10 passages, with a slight decline. The cells were consistently positive for mesenchymal stem cell-related markers CD73 and CD105, and negative for the hematopoietic markers CD14 and CD45. NHNCs could differentiate into osteoblast lineage cells; however, they did not have strong calcification or sufficient chondrogenic differentiation capability. E-BMP-2 did not affect the proliferative capability of the cells but improved their osteogenic differentiation capability by increasing alkaline phosphatase activity and upregulating the gene expression of osterix, bone sialoprotein, and osteocalcin. E-BMP-2 enhanced their chondrogenic differentiation capability by upregulating the gene expression of aggrecan and collagen type II. We showed, for the first time, that NHNCs have the capacity to differentiate into osteoblast-lineage cells, although the chondrogenic differentiation potential was poor. Local application of E-BMP-2 with preservation of nonunion tissue is a potential treatment option for non-hypertrophic nonunion.

3.
Calcif Tissue Int ; 109(2): 215-229, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33751141

RESUMEN

Current treatment options for osteoporosis primarily involve pharmacotherapies, but they are often accompanied by undesirable side effects. Utilization of mechanical stress which can noninvasively induce bone formation has been suggested as an alternative to conventional treatments. Here, we examined the efficacy of mechanical stress induced by electrical stimulation, radial extracorporeal shock waves, and ultrasound for estrogen-deficient osteoporosis. Female Wistar rats were divided into following five groups: sham-operated group, untreated after ovariectomy, and treated with electrical stimulation, radial extracorporeal shock wave, or ultrasound starting at 8 weeks after ovariectomy for 4 weeks. Trabecular bone architecture of the femur was assessed by micro-CT and its biomechanical properties were obtained by mechanical testing. The femurs were further evaluated by histochemical, immunohistochemical, and real-time PCR analyses. Radial extracorporeal shock wave and ultrasound treatment improved trabecular bone microarchitecture and bone strength in osteoporotic rats, but not electrical stimulation. The shock wave decreased osteoclast activity and RANKL expression. The exposure of ultrasound increased osteoblast activity and ß-catenin-positive cells, and they decreased sclerostin-positive osteocytes. These findings suggest that mechanical stress induced by radial extracorporeal shock wave and ultrasound can improve estrogen-deficient bone loss and bone fragility through promoted bone formation or attenuated bone resorption.


Asunto(s)
Osteoporosis , Animales , Densidad Ósea , Estimulación Eléctrica , Femenino , Fémur , Humanos , Osteoporosis/terapia , Ovariectomía , Ratas , Ratas Wistar , Estrés Mecánico
4.
J Orthop Sci ; 26(3): 459-465, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32493622

RESUMEN

BACKGROUND: A reamer irrigator aspirator (RIA) can be used to harvest substantial amounts of autologous bone and debride the intramedullary canal. Clinical experience using reamer irrigator aspirators in Japan is very limited. The applicability of the reamer irrigator aspirator head with a minimum diameter of 12 mm for Japanese people is often questioned as the Japanese are smaller than Americans and Europeans. There are no reports of complications in Japanese patients. This study aimed to retrospectively review clinical cases and describe reamer irrigator aspirator use in Japanese patients. METHODS: All patients for whom a reamer irrigator aspirator was used during surgery at our hospital between January 2014 and September 2018 were included. The patients' clinical and radiographic data were retrospectively reviewed. RESULTS: Data of 40 patients (42 cases) were collected. The reamer irrigator aspirator was used for bone graft harvesting in 32 cases, intramedullary debridement and irrigation in 9 cases, and reaming for exchange nailing in 1 case. The diameter of the reamer irrigator aspirator reamer head was 12 mm in 22 cases (53.7%), 12.5 mm in 4 cases (9.8%), 13 mm in 9 cases (22.0%), 13.5 mm in 1 case (2.4%), 14.0 mm in 1 case (2.4%), 14.5 mm in 1 case (2.4%), and 15 mm in 4 cases (9.8%). Mean intraoperative bleeding volume was 1158.6 mL (range, 100-3800 mL). We experienced no difficulty inserting the reamer irrigator aspirator into the intramedullary canals and no cases of insertion-related intraoperative fracture. Five cortical perforations (11.9%) were observed on postoperative computed tomography scans, although no patient was symptomatic. One case (2.4%) of postoperative femur fracture occurred. CONCLUSIONS: Reamer irrigator aspirators can be used in Japanese patients. Smaller reamer head sizes were mainly used in our experience. We should manage complications as in previous reports from Western countries.


Asunto(s)
Fracturas del Fémur , Irrigación Terapéutica , Trasplante Óseo , Humanos , Japón , Estudios Retrospectivos , Recolección de Tejidos y Órganos
5.
Clin Orthop Relat Res ; 478(8): 1922-1935, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32732577

RESUMEN

BACKGROUND: Distraction osteogenesis has been broadly used to treat various structural bone deformities and defects. However, prolonged healing time remains a major problem. Various approaches including the use of low-intensity pulsed ultrasound, parathyroid hormone, and bone morphogenetic proteins (BMPs) have been studied to shorten the treatment period with limited success. Our previous studies of rats have reported that the transcutaneous application of CO2 accelerates fracture repair and bone-defect healing in rats by promoting angiogenesis, blood flow, and endochondral ossification. This therapy may also accelerate bone generation during distraction osteogenesis, but, to our knowledge, no study investigating CO2 therapy on distraction osteogenesis has been reported. QUESTIONS/PURPOSES: We aimed to investigate the effect of transcutaneous CO2 during distraction osteogenesis in rabbits, which are the most suitable animal as a distraction osteogenesis model for a lengthener in terms of limb size. We asked: Does transcutaneous CO2 during distraction osteogenesis alter (1) radiographic bone density in the distraction gap during healing; (2) callus parameters, including callus bone mineral content, volumetric bone mineral density, and bone volume fraction; (3) the newly formed bone area, cartilage area, and angiogenesis, as well as the expression of interleukin-6 (IL-6), BMP-2, BMP-7, hypoxia-inducible factor (HIF) -1α, and vascular endothelial growth factor (VEGF); and (4) three-point bend biomechanical strength, stiffness, and energy? METHODS: Forty 24-week-old female New Zealand white rabbits were used according to a research protocol approved by our institutional ethical committee. A distraction osteogenesis rabbit tibia model was created as previously described. Briefly, an external lengthener was applied to the right tibia, and a transverse osteotomy was performed at the mid-shaft. The osteotomy stumps were connected by adjusting the fixator to make no gap. After a 7-day latency phase, distraction was continued at 1 mm per day for 10 days. Beginning the day after the osteotomy, a 20-minute transcutaneous application of CO2 on the operated leg using a CO2 absorption-enhancing hydrogel was performed five times per week in the CO2 group (n = 20). Sham treatment with air was administered in the control group (n = 20). Animals were euthanized immediately after the distraction period (n = 10), 2 weeks (n = 10), and 4 weeks (n = 20) after completion of distraction. We performed bone density quantification on the plain radiographs to evaluate consolidation in the distraction gap with image analyzing software. Callus parameters were measured with micro-CT to assess callus microstructure. The newly formed bone area and cartilage area were measured histologically with safranin O/fast green staining to assess the progress of ossification. We also performed immunohistochemical staining of endothelial cells with fluorescein-labeled isolectin B4 and examined capillary density to evaluate angiogenesis. Gene expressions in newly generated callus were analyzed by real-time polymerase chain reaction. Biomechanical strength, stiffness, and energy were determined from a three-point bend test to assess the mechanical strength of the callus. RESULTS: Radiographs showed higher pixel values in the distracted area in the CO2 group than the control group at Week 4 of the consolidation phase (0.98 ± 0.11 [95% confidence interval 0.89 to 1.06] versus 1.19 ± 0.23 [95% CI 1.05 to 1.34]; p = 0.013). Micro-CT demonstrated that bone volume fraction in the CO2 group was higher than that in the control group at Week 4 (5.56 ± 3.21 % [95% CI 4.32 to 6.12 %] versus 11.90 ± 3.33 % [95% CI 9.63 to 14.25 %]; p = 0.035). There were no differences in any other parameters (that is, callus bone mineral content at Weeks 2 and 4; volumetric bone mineral density at Weeks 2 and 4; bone volume fraction at Week 2). At Week 2, rabbits in the CO2 group had a larger cartilage area compared with those in the control group (2.09 ± 1.34 mm [95% CI 1.26 to 2.92 mm] versus 5.10 ± 3.91 mm [95% CI 2.68 to 7.52 mm]; p = 0.011). More newly formed bone was observed in the CO2 group than the control group at Week 4 (68.31 ± 16.32 mm [95% CI 58.19 to 78.44 mm] versus 96.26 ± 19.37 mm [95% CI 84.25 to 108.26 mm]; p < 0.001). There were no differences in any other parameters (cartilage area at Weeks 0 and 4; newly formed bone area at Weeks 0 and 2). Immunohistochemical isolectin B4 staining showed greater capillary densities in rabbits in the CO2 group than the control group in the distraction area at Week 0 and surrounding tissue at Weeks 0 and 2 (distraction area at Week 0, 286.54 ± 61.55 /mm [95% CI 232.58 to 340.49] versus 410.24 ± 55.29 /mm [95% CI 361.78 to 458.71]; p < 0.001; surrounding tissue at Week 0 395.09 ± 68.16/mm [95% CI 335.34 to 454.83] versus 589.75 ± 174.42/mm [95% CI 436.86 to 742.64]; p = 0.003; at Week 2 271.22 ± 169.42 /mm [95% CI 122.71 to 419.73] versus 508.46 ± 49.06/mm [95% CI 465.45 to 551.47]; p < 0.001 respectively). There was no difference in the distraction area at Week 2. The expressions of BMP -2 at Week 2, HIF1-α at Week 2 and VEGF at Week 0 and 2 were greater in the CO2 group than in the control group (BMP -2 at Week 2 3.84 ± 0.83 fold [95% CI 3.11 to 4.58] versus 7.32 ± 1.63 fold [95% CI 5.88 to 8.75]; p < 0.001; HIF1-α at Week 2, 10.49 ± 2.93 fold [95% CI 7.91 to 13.06] versus 20.74 ± 11.01 fold [95% CI 11.09 to 30.40]; p < 0.001; VEGF at Week 0 4.80 ± 1.56 fold [95% CI 3.43 to 6.18] versus 11.36 ± 4.82 fold [95% CI 7.13 to 15.59]; p < 0.001; at Week 2 31.52 ± 8.26 fold [95% CI 24.27 to 38.76] versus 51.05 ± 15.52 fold [95% CI 37.44 to 64.66]; p = 0.034, respectively). There were no differences in any other parameters (BMP-2 at Week 0 and 4; BMP -7 at Weeks 0, 2 and 4; HIF-1α at Weeks 0 and 4; IL-6 at Weeks 0, 2 and 4; VEGF at Week 4). In the biomechanical assessment, ultimate stress and failure energy were greater in the CO2 group than in the control group at Week 4 (ultimate stress 259.96 ± 74.33 N [95% CI 167.66 to 352.25] versus 422.45 ± 99.32 N [95% CI 299.13 to 545.77]; p < 0.001, failure energy 311.32 ± 99.01 Nmm [95% CI 188.37 to 434.25] versus 954.97 ± 484.39 Nmm [95% CI 353.51 to 1556.42]; p = 0.003, respectively). There was no difference in stiffness (216.77 ± 143.39 N/mm [95% CI 38.73 to 394.81] versus 223.68 ± 122.17 N/mm [95% CI 71.99 to 375.37]; p = 0.92). CONCLUSION: Transcutaneous application of CO2 accelerated bone generation in a distraction osteogenesis model of rabbit tibias. As demonstrated in previous studies, CO2 treatment might affect bone regeneration in distraction osteogenesis by promoting angiogenesis, blood flow, and endochondral ossification. CLINICAL RELEVANCE: The use of the transcutaneous application of CO2 may open new possibilities for shortening healing time in patients with distraction osteogenesis. However, a deeper insight into the mechanism of CO2 in the local tissue is required before it can be used in future clinical practice.


Asunto(s)
Densidad Ósea/fisiología , Regeneración Ósea/fisiología , Dióxido de Carbono/administración & dosificación , Osteogénesis por Distracción/métodos , Osteogénesis/fisiología , Tibia/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Femenino , Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-6/metabolismo , Conejos , Tibia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microtomografía por Rayos X
6.
J Orthop Sci ; 25(5): 886-891, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31635930

RESUMEN

BACKGROUND: Carbon dioxide therapy has been reported to be effective in treating certain cardiac diseases and skin problems. Although a previous study suggested that transcutaneous carbon dioxide application accelerated fracture repair in association with promotion of angiogenesis, blood flow, and endochondral ossification, the influence of the duration of carbon dioxide application on fracture repair is unknown. The aim of this study was to investigate the effect of the duration of transcutaneous carbon dioxide application on rat fracture repair. METHODS: A closed femoral shaft fracture was created in each rat. Animals were randomly divided into four groups: the control group; 1w-CO2 group, postoperative carbon dioxide treatment for 1 week; 2w-CO2 group, postoperative carbon dioxide treatment for 2 weeks; 3w-CO2 group, postoperative carbon dioxide treatment for 3 weeks. Transcutaneous carbon dioxide application was performed five times a week in the carbon dioxide groups. Sham treatment, where the carbon dioxide was replaced with air, was performed for the control group. Radiographic, histological, and biomechanical assessments were performed at 3 weeks after fracture. RESULTS: The fracture union rate was significantly higher in the 3w-CO2 group than in the control group (p < 0.05). Histological assessment revealed promotion of endochondral ossification in the 3w-CO2 group than in the control group. In the biomechanical assessment, all evaluation items related to bone strength were significantly higher in the 3w-CO2 group than in the control group (p < 0.05). CONCLUSIONS: The present study, conducted using an animal model, demonstrated that continuous carbon dioxide application throughout the process of fracture repair was effective in enhancing fracture healing.


Asunto(s)
Dióxido de Carbono/administración & dosificación , Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura/efectos de los fármacos , Administración Tópica , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Hidrogeles , Masculino , Ratas , Ratas Sprague-Dawley
7.
BMC Musculoskelet Disord ; 20(1): 602, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830958

RESUMEN

BACKGROUND: Rad is the prototypic member of a subfamily of Ras-related small G-proteins and is highly expressed in the skeletal muscle of patients with type II diabetes. Our previous microarray analysis suggested that Rad may mediate fracture nonunion development. Thus, the present study used rat experimental models to investigate and compare the gene and protein expression patterns of both Rad and Rem1, another RGK subfamily member, in nonunions and standard healing fractures. METHODS: Standard healing fractures and nonunions (produced via periosteal cauterization at the fracture site) were created in the femurs of 3-month-old male Sprague-Dawley rats. At post-fracture days 7, 14, 21, and 28, the fracture callus and fibrous tissue from the standard healing fractures and nonunions, respectively, were harvested and screened (via real-time PCR) for Rad and Rem1 expression. The immunolocalization of both encoded proteins was analyzed at post-fracture days 14 and 21. At the same time points, hematoxylin and eosin staining was performed to identify the detailed tissue structures. RESULTS: Results of real-time PCR analysis showed that Rad expression increased significantly in the nonunions, compared to that in the standard healing fractures, at post-fracture days 14, 21, and 28. Conversely, immunohistochemical analysis revealed the immunolocalization of Rad to be similar to that of Rem1 in both fracture types at post-fracture days 14 and 21. CONCLUSIONS: Rad may mediate nonunion development, and thus, may be a promising therapeutic target to treat these injuries.


Asunto(s)
Fracturas no Consolidadas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas ras/metabolismo , Animales , Masculino , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
8.
BMC Musculoskelet Disord ; 20(1): 563, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31766994

RESUMEN

BACKGROUND: Clinicians have very limited options to improve fracture repair. Therefore, it is critical to develop a new clinically available therapeutic option to assist fracture repair biologically. We previously reported that the topical cutaneous application of carbon dioxide (CO2) via a CO2 absorption-enhancing hydrogel accelerates fracture repair in rats by increasing blood flow and angiogenesis and promoting endochondral ossification. The aim of this study was to assess the safety and efficacy of CO2 therapy in patients with fractures. METHODS: Patients with fractures of the femur and tibia were prospectively enrolled into this study with ethical approval and informed consent. The CO2 absorption-enhancing hydrogel was applied to the fractured lower limbs of patients, and then 100% CO2 was administered daily into a sealed space for 20 min over 4 weeks postoperatively. Safety was assessed based on vital signs, blood parameters, adverse events, and arterial and expired gas analyses. As the efficacy outcome, blood flow at the level of the fracture site and at a site 5 cm from the fracture in the affected limb was measured using a laser Doppler blood flow meter. RESULTS: Nineteen patients were subjected to complete analysis. No adverse events were observed. Arterial and expired gas analyses revealed no adverse systemic effects including hypercapnia. The mean ratio of blood flow 20 min after CO2 therapy compared with the pre-treatment level increased by approximately 2-fold in a time-dependent manner. CONCLUSIONS: The findings of the present study revealed that CO2 therapy is safe to apply to human patients and that it can enhance blood flow in the fractured limbs. TRIAL REGISTRATION: This study has been registered in the UMIN Clinical Trials Registry (Registration number: UMIN000013641, Date of registration: July 1, 2014).


Asunto(s)
Velocidad del Flujo Sanguíneo/efectos de los fármacos , Dióxido de Carbono/administración & dosificación , Fracturas del Cuello Femoral/tratamiento farmacológico , Hidrogeles/administración & dosificación , Fracturas de la Tibia/tratamiento farmacológico , Administración Tópica , Adulto , Anciano , Velocidad del Flujo Sanguíneo/fisiología , Dióxido de Carbono/metabolismo , Femenino , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/fisiopatología , Estudios de Seguimiento , Humanos , Hidrogeles/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/fisiopatología , Resultado del Tratamiento , Adulto Joven
9.
BMC Musculoskelet Disord ; 20(1): 237, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31113412

RESUMEN

BACKGROUND: Bone defects may occur because of severe trauma, nonunion, infection, or tumor resection. However, treatments for bone defects are often difficult and have not been fully established yet. We previously designed an efficient system of topical cutaneous application of carbon dioxide (CO2) using a novel hydrogel, which facilitates CO2 absorption through the skin into the deep area within a limb. In this study, the effect of topical cutaneous application of CO2 on bone healing was investigated using a rat femoral defect model. METHODS: In this basic research study, an in vivo bone defect model, fixed with an external fixator, was created using a rat femur. The affected limb was shaved, and CO2 was applied for 20 min/day, 5 days/week. In the control animals, CO2 gas was replaced with air. Radiographic, histological, biomechanical, and genetic assessments were performed to evaluate bone healing. RESULTS: Radiographically, bone healing rate was significantly higher in the CO2 group than in the control group at 4 weeks (18.2% vs. 72.7%). The degree of bone healing scored using the histopathological Allen grading system was significantly higher in the CO2 group than in the control group at 2 weeks (1.389 ± 0.334 vs. 1.944 ± 0.375). The ultimate stress, extrinsic stiffness, and failure energy were significantly greater in the CO2 group than in the control group at 4 weeks (3.2 ± 0.8% vs. 38.1 ± 4.8%, 0.6 ± 0.3% vs. 41.5 ± 12.2%, 2.6 ± 0.8% vs. 24.7 ± 5.9%, respectively.). The volumetric bone mineral density of the callus in micro-computed tomography analysis was significantly higher in the CO2 group than in the control group at 4 weeks (180.9 ± 43.0 mg/cm3 vs. 247.9 ± 49.9 mg/cm3). Gene expression of vascular endothelial growth factor in the CO2 group was significantly greater than that in the control group at 3 weeks (0.617 ± 0.240 vs. 2.213 ± 0.387). CONCLUSIONS: Topical cutaneous application of CO2 accelerated bone healing in a rat femoral defect model. CO2 application can be a novel and useful therapy for accelerating bone healing in bone defects; further research on its efficacy in humans is warranted.


Asunto(s)
Dióxido de Carbono/administración & dosificación , Fracturas del Fémur/terapia , Curación de Fractura/efectos de los fármacos , Administración Cutánea , Animales , Callo Óseo/diagnóstico por imagen , Callo Óseo/efectos de los fármacos , Modelos Animales de Enfermedad , Fracturas del Fémur/complicaciones , Fémur/diagnóstico por imagen , Fémur/lesiones , Humanos , Masculino , Ratas , Microtomografía por Rayos X
10.
Int Orthop ; 43(5): 1247-1253, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30097727

RESUMEN

PURPOSE: This study investigated whether Escherichia coli-derived bone morphogenetic protein (BMP)-2 (E-BMP-2) adsorbed onto ß-tricalcium phosphate (ß-TCP) granules can induce bone regeneration in critical-size femoral segmental defects in rabbits. METHODS: Bone defects 20 mm in size and stabilized with an external fixator were created in the femur of New Zealand white rabbits, which were divided into BMP-2 and control groups. E-BMP-2-loaded ß-TCP granules were implanted into defects of the BMP-2 group, whereas defects in the controls were implanted with ß-TCP granules alone. At 12 and 24 weeks after surgery, radiographs were obtained of the femurs and histological and biomechanical assessments of the defect area were performed. Bone regeneration was quantified using micro-computed tomography at 24 weeks. RESULTS: Radiographic and histologic analyses revealed bone regeneration in the BMP-2 group but not the control group; no fracturing of newly formed bone occurred when the external fixator was removed at 12 weeks. At 24 weeks, tissue mineral density, the ratio of bone volume to total volume, and volumetric bone mineral density of the callus were higher in the BMP-2 group than in control animals. In the former, ultimate stress, extrinsic stiffness, and failure energy measurements for the femurs were higher at 24 weeks than at 12 weeks. CONCLUSION: E-BMP-2-loaded ß-TCP granules can effectively promote bone regeneration in long bone defects.


Asunto(s)
Proteína Morfogenética Ósea 2/administración & dosificación , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/administración & dosificación , Fosfatos de Calcio/administración & dosificación , Proteínas de Escherichia coli/administración & dosificación , Fémur/efectos de los fármacos , Adsorción , Animales , Densidad Ósea , Regeneración Ósea/fisiología , Materiales Biocompatibles Revestidos/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Fémur/diagnóstico por imagen , Fémur/lesiones , Fémur/fisiopatología , Implantación de Prótesis , Conejos , Microtomografía por Rayos X
12.
BMC Musculoskelet Disord ; 18(1): 545, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29268728

RESUMEN

BACKGROUND: Some reports have shown that intermittent parathyroid hormone (PTH) (1-34) treatment for patients with delayed union or nonunion have led to successful healing. In this study, we investigated whether systemic intermittent administration of PTH (1-34) has a beneficial effect on bone healing in a rat refractory fracture model. METHODS: We created a refractory femoral fracture model in 32 rats with periosteal cauterization that leads to atrophic nonunion at 8 weeks after surgery. Half the rats received subcutaneous intermittent human PTH (1-34) injections at a dosage of 100 µg/kg, thrice a week for 8 weeks. The other half received the vehicle only. At 8 weeks after fracture, radiographic, histological and mechanical assessments were performed. RESULTS: Radiographic assessments showed that the union rate was significantly higher in the PTH group than in the control group (P < 0.05). The degree of fracture repair as scored using the Allen grading system in histological assessment was significantly greater in the PTH group than in the control group (P < 0.05). The ultimate stress and stiffness measurements were significantly greater in the PTH group than in the control group (p < 0.05). CONCLUSIONS: We demonstrated that triweekly administration of PTH (1-34) increased union rate and accelerated bone healing in a rat refractory fracture model, suggesting that systemic administration of PTH (1-34) could become a novel and useful therapy for accelerating fracture healing in patients at high risk of delayed union or nonunion.


Asunto(s)
Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura/efectos de los fármacos , Hormona Paratiroidea/administración & dosificación , Animales , Esquema de Medicación , Curación de Fractura/fisiología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
13.
Int Orthop ; 41(6): 1211-1217, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28412763

RESUMEN

PURPOSE: Diabetes mellitus (DM) is known to impair fracture healing. The purpose of this study was to elucidate and compare the gene expression patterns and localization of stromal cell-derived factor 1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) during fracture healing of the femur in rats with and without DM. METHODS: Closed transverse fractures were created in the femurs of rats equally divided into a DM group and control group; DM was induced by streptozotocin. At post-fracture days five, seven, 11, 14, 21 and 28, total RNA was extracted from the fracture callus and mRNA expression levels of SDF-1 and CXCR4 were measured by real-time polymerase chain reaction. Localization of SDF-1 and CXCR4 proteins at the fracture site was determined by immunohistochemistry at days 21 and 28. RESULTS: SDF-1 expression was significantly lower in the DM group than in the healthy group on days 21 and 28, and showed a significant difference between days 14 and 21 in the healthy group. There was no significant difference in CXCR4 expression levels between the healthy and DM groups at any time point. On day 21 immunoreactivity of SDF-1 and CXCR4 was detected at the fracture site of the healthy group but no immunoreactivity was observed in the DM group. On day 28, immunoreactivity of SDF-1 and CXCR4 was detected at the fracture site in both groups. CONCLUSION: Gene expression and localization of SDF-1 and CXCR4 was altered during fracture healing, which may contribute to the impaired fracture healing in DM.


Asunto(s)
Quimiocina CXCL12/metabolismo , Diabetes Mellitus/metabolismo , Curación de Fractura/fisiología , Receptores CXCR4/metabolismo , Animales , Fracturas Óseas , Expresión Génica , Inmunohistoquímica , Masculino , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Biochem Biophys Res Commun ; 460(3): 741-6, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25817731

RESUMEN

Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically.


Asunto(s)
Cartílago/enzimología , Traumatismos de la Rodilla/enzimología , Metaloproteinasas de la Matriz/metabolismo , Animales , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Bone Joint Res ; 13(3): 91-100, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38425312

RESUMEN

Aims: Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 µg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods: Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results: The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 µg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 µg/ml, and ALP activity was significantly decreased at ≥ 750 µg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 µg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 µg/ml on day 21 and at 500 µg/ml on day 28, and ALP activity was significantly decreased at 500 µg/ml on day 28. Conclusion: Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting.

17.
Lab Invest ; 93(9): 1036-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897412

RESUMEN

Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions.


Asunto(s)
Fracturas Óseas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Fisiológica/fisiología , ARN Interferente Pequeño/metabolismo , Cicatrización de Heridas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células de la Médula Ósea/metabolismo , Proliferación Celular , Distribución de Chi-Cuadrado , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histocitoquímica , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/genética , Flujometría por Láser-Doppler , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Fenotipo , ARN Interferente Pequeño/genética , Flujo Sanguíneo Regional , Estadísticas no Paramétricas , Transfección , Cicatrización de Heridas/genética , Microtomografía por Rayos X
18.
Cureus ; 15(3): e35780, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37025708

RESUMEN

A Hoffa fracture is a rare type of femoral fracture that is difficult to treat. Nonoperative treatments usually result in failure; hence, in most cases, surgical treatments are essential. Nonunion following Hoffa fracture appears to be relatively uncommon, and there are limited reports in the literature about this type of nonunion. These reports suggest that open reduction and rigid internal fixation is the standard treatment for this type of nonunion. This study reports the case of a 61-year-old male patient who suffered from left lateral Hoffa fracture after falling from a truck bed. At the former hospital, open reduction and internal fixation were performed with plates and screws at 8 days post-injury. Postoperatively, displacement of the lateral proximal fragment was observed, and the patient reported left knee pain. Therefore, a revision open reduction and internal fixation was performed 4 months post-surgery. However, 6 months after the revision surgery, the patient reported instability and pain in the left knee, and subsequent radiography revealed nonunion of the fracture in the lateral condyle. The patient was referred to our hospital for further treatment. Treatment by re-revision open reduction and internal fixation was deemed challenging, and so rotating hinge knee (RHK) arthroplasty was performed as a salvage treatment. At 3 years post-surgery, no significant problems were observed, and the patient could walk without any assistance. The range of motion of the left knee was 0 to 100° without extension lag, and there was no lateral instability. Standard treatment for Hoffa fracture nonunion is commonly anatomical reduction and rigid internal fixation. However, total knee arthroplasty may be a better option for the treatment of Hoffa fracture nonunion in older patients.

19.
Injury ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062672

RESUMEN

INTRODUCTION: The Masquelet technique is a relatively new method for large bone defect treatment. In this technique, grafted bone tissue is used, and after the cement is removed, the induced membrane (IM; that form around the cement spacers placed in the bone defect region) is thought to play an important role in promoting bone formation. On the other hand, low-intensity pulsed ultrasound (LIPUS) is known to promote fracture healing and angiogenesis through mechanical stimulation. This study aimed to investigate the in vitro effects of LIPUS on the osteogenic differentiation of human induced membrane-derived cells (IMCs). METHODS: Seven patients who had been treated using the Masquelet technique were enrolled. The IM was harvested during the second stage of the technique. IMCs were isolated, cultured in growth medium, and then divided into two groups: (1) control group, IMCs cultured in osteogenic medium without LIPUS, and (2) LIPUS group, IMCs cultured in osteogenic medium with LIPUS treatment. Adherent cells from the IM samples were harvested after the first passage and evaluated for cell surface protein expression using immunostaining. A cell proliferation assay was used to count the number of IMCs using a hemocytometer. Osteogenic differentiation capability was assessed using an alkaline phosphatase (ALP) activity assay, Alizarin Red S staining, and real-time reverse transcription-polymerase chain reaction. RESULTS: Cell surface antigen profiling revealed that the IMCs contained cells positive for the mesenchymal stem cell-related markers CD73, CD90, and CD105. No significant difference in cell numbers was found between the control and LIPUS groups. The ALP activity of IMCs in the LIPUS group was significantly higher than that in the control group on days 7 and 14. Alizarin red S staining intensity was significantly higher in the LIPUS group than in the control group on day 21. Runx2 and VEGF expression was significantly upregulated on days 7 and 14, respectively, compared with levels in the control group. CONCLUSION: We demonstrated the significant effect of LIPUS on the osteogenic differentiation of human IMCs. This study indicates that LIPUS can be used as an additional tool for the enhancement of the healing process of the Masquelet technique.

20.
J Bone Oncol ; 40: 100478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37180736

RESUMEN

Bone-modifying agents (BMAs), with bone-resorptive inhibitory effects, such as zoledronic acid and denosumab, are widely used at higher doses for bone-related events caused by bone metastasis of malignant tumors. These drugs have been suggested to be associated with atypical femoral fractures (AFFs), and the relationship between BMAs and AFFs has attracted attention. To investigate the clinical features including bone union time of AFFs in patients administered BMA for bone metastasis, we conducted a retrospective multicenter study. Thirty AFFs from 19 patients were enrolled in this study. Thirteen patients had bilateral AFFs, and nineteen AFFs had prodromal symptoms. Eighteen AFFs underwent surgery after complete fracture, three failed to achieve bone union and required nonunion surgery, and 11 AFFs that achieved bone union had an average period until bone union of 16.2 months, which was much longer than that previously reported for ordinary AFFs. Seven patients discontinued the BMAs, but not due to AFFs. Stopping BMAs in patients with bone metastasis would make it difficult to secure their performance of activities of daily living, and AFF with BMA administration might require a longer time for union. Therefore, it would be important to prevent incomplete AFF from becoming complete AFF via prophylactic internal fixation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA