Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Arch Environ Contam Toxicol ; 86(3): 234-248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555540

RESUMEN

Stable isotopes (SI) and fatty acid (FA) biomarkers can provide insights regarding trophic pathways and habitats associated with contaminant bioaccumulation. We assessed relationships between SI and FA biomarkers and published data on concentrations of two pesticides [dichlorodiphenyltrichloroethane and degradation products (DDX) and bifenthrin] in juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Sacramento River and Yolo Bypass floodplain in Northern California near Sacramento. We also conducted SI and FA analyses of zooplankton and macroinvertebrates to determine whether particular trophic pathways and habitats were associated with elevated pesticide concentrations in fish. Relationships between DDX and both sulfur (δ34S) and carbon (δ13C) SI ratios in salmon indicated that diet is a major exposure route for DDX, particularly for individuals with a benthic detrital energy base. Greater use of a benthic detrital energy base likely accounted for the higher frequency of salmon with DDX concentrations > 60 ng/g dw in the Yolo Bypass compared to the Sacramento River. Chironomid larvae and zooplankton were implicated as prey items likely responsible for trophic transfer of DDX to salmon. Sulfur SI ratios enabled identification of hatchery-origin fish that had likely spent insufficient time in the wild to substantially bioaccumulate DDX. Bifenthrin concentration was unrelated to SI or FA biomarkers in salmon, potentially due to aqueous uptake, biotransformation and elimination of the pesticide, or indistinct biomarker compositions among invertebrates with low and high bifenthrin concentrations. One FA [docosahexaenoic acid (DHA)] and DDX were negatively correlated in salmon, potentially due to a greater uptake of DDX from invertebrates with low DHA or effects of DDX on FA metabolism. Trophic biomarkers may be useful indicators of DDX accumulation and effects in juvenile Chinook Salmon in the Sacramento River Delta.


Asunto(s)
Plaguicidas , Piretrinas , Animales , Plaguicidas/análisis , Salmón/metabolismo , Ácidos Grasos/metabolismo , Bioacumulación , Diclorodifenil Dicloroetileno/análisis , Invertebrados , Ecosistema , Peces/metabolismo , Dieta , Isótopos/análisis , Biomarcadores/metabolismo , Azufre/metabolismo , Azufre/farmacología
2.
Environ Sci Technol ; 56(8): 5071-5080, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35353479

RESUMEN

Two commonly used insecticides, bifenthrin and fipronil, can accumulate in the prey of juvenile Chinook salmon, yet the effects of dietary exposure are not understood. Therefore, to better characterize the effect of a dietary exposure route, juvenile Chinook salmon were fed chironomids dosed with a concentration of 9 or 900 ng/g of bifenthrin, fipronil, or their mixture for 25 days at concentrations previously measured in field-collected samples. Chinook were assessed for maximum swimming performance (Umax) using a short-duration constant acceleration test and biochemical responses related to energetic processes (glucose levels) and liver health (aspartate aminotransferase (AST) activity). Chinook exposed to bifenthrin and bifenthrin and fipronil mixtures had a significantly reduced swimming performance, although not when exposed to fipronil alone. The AST activity was significantly increased in bifenthrin and mixture treatments and glucose levels were increased in Chinook following a mixture treatment, although not when exposed to fipronil alone. These findings suggest that there are different metabolic processes between bifenthrin and fipronil following dietary uptake that may influence toxicity. The significant reductions in swimming performance and increased levels of biochemical processes involved in energetics and fish heath could have implications for foraging activity and predator avoidance in wild fish at sensitive life stages.


Asunto(s)
Exposición Dietética , Salmón , Animales , Glucosa/metabolismo , Pirazoles , Piretrinas , Salmón/metabolismo , Natación/fisiología
3.
Ecotoxicology ; 30(2): 257-267, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33534069

RESUMEN

The increased use of pyrethroid insecticides raises concern for exposure to non-target aquatic species, such as Chinook salmon (Oncorhynchus tshawytscha). Cypermethrin, a type II pyrethroid, is frequently detected in surface waters and sediments at concentrations that exceed levels that induce toxicity to several invertebrate and salmonid species. To better understand the effects of cypermethrin to salmonids following dietary exposure, juvenile Chinook salmon were dietarily exposed to a 0, 200, or 2000 ng/g cypermethrin diet for a duration of 7, 14, or 21 days and assessed for body burden residues, swimming performance, lipid content, and lipid homeostatic gene expression. The average cypermethrin concentrations in fish dietarily exposed to cypermethrin for 21 days were 155.4 and 952.1 ng cypermethrin/g lipid for the 200 and 2000 ng/g pellet treatments, respectively. Increased trends of fatty acid synthase (fasn, r2 = 0.10, p < 0.05) and ATP citrate lyase (acly, r2 = 0.21, p < 0.001) mRNA expression were found in the fish livers relative to increasing cypermethrin body burden residues, though no significant changes in the mRNA expression of farnesoid X receptor or liver X receptor were observed. Furthermore, Chinook salmon dietarily exposed to cypermethrin did not have a significantly altered burst swimming performance (Umax). These results support studies that have suggested Umax may not be a sensitive endpoint when assessing the effects of certain pesticide classes, such as pyrethroids, but that dysregulation of fasn and acly expression may alter lipid homeostasis and energy metabolism in the liver of fish dietarily exposed to cypermethrin.


Asunto(s)
Piretrinas , Salmón , Animales , Exposición Dietética , Homeostasis , Hígado , Piretrinas/toxicidad , Salmón/genética , Natación
4.
Ecotoxicol Environ Saf ; 186: 109764, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31610356

RESUMEN

Crustaceans have been designated as internationally important model organisms in the development of environmental radioprotection measures. Despite the known sensitivity of sperm to ionizing radiation, the impacts of chronic radiation exposure on male fertility in crustaceans have not been studied. For the first time, the present study aimed to assess the impacts of chronic radiation exposure on male fertility, sperm DNA damage and concomitant impacts on breeding in two amphipod crustaceans. Echinogammarus marinus and Gammarus pulex (male fertility only) were exposed to phosphorus-32 at dose rates of 0, 0.1, 1 and 10 mGy/d and sperm parameters, DNA damage and knock-on impacts on breeding were assessed. Sperm quality parameters and DNA damage were assessed using a fluorescent staining method and single cell gel electrophoresis respectively. Concomitant effects of male exposure to radiation on fecundity were determined by pairing phosphorus-32 exposed males to unexposed sexually mature females. In E. marinus, a statistically significant reduction of 9 and 11% in the quality of sperm was recorded at dose rates of 1 and 10 mGy/d respectively, with no significant effects recorded on sperm counts. Conversely in the freshwater G. pulex, no significant impact of radiation on sperm quantity or quality was recorded. For E. marinus, a statistically significant increase in DNA damage was recorded at doses of 10 mGy/d. Reduced fecundity and an increase in the frequency of abnormal embryos was recorded in female E. marinus breeding with males exposed to radiation. These findings suggest sperm quality may be a sensitive indicator of radiation exposure in invertebrates with potential impacts on the unexposed embryo, though unclear dose-response and differences between two closely related species necessitate further study before robust conclusions can be drawn.


Asunto(s)
Anfípodos/efectos de la radiación , Daño del ADN , Radiación Ionizante , Espermatozoides/efectos de la radiación , Anfípodos/genética , Anfípodos/crecimiento & desarrollo , Animales , Femenino , Fertilidad/efectos de la radiación , Agua Dulce , Masculino , Agua de Mar , Espermatozoides/patología
5.
Environ Toxicol Chem ; 43(2): 307-323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37877769

RESUMEN

Environmental metabolomics has emerged as a promising technique in the field of biomonitoring and as an indicator of aquatic ecosystem health. In the Milwaukee Estuary (Wisconsin, USA), previous studies have used a nontargeted metabolomic approach to distinguish between zebra mussels (Dreissena polymorpha) collected from sites of varying contamination. To further elucidate the potential effects of contaminants on bivalve health in the Milwaukee Estuary, the present study adopted a caging approach to study the metabolome of quagga mussels (Dreissena bugensis rostriformis) deployed in six sites of varying contamination for 2, 5, or 55 days. Caged mussels were co-deployed with two types of passive sampler (polar organic chemical integrative samplers and semipermeable membrane devices) and data loggers. In conjunction, in situ quagga mussels were collected from the four sites studied previously and analyzed for residues of contaminants and metabolomics using a targeted approach. For the caging study, temporal differences in the metabolomic response were observed with few significant changes observed after 2 and 5 days, but larger differences (up to 97 significantly different metabolites) to the metabolome in all sites after 55 days. A suite of metabolic pathways were altered, including biosynthesis and metabolism of amino acids, and upmodulation of phospholipids at all sites, suggesting a potential biological influence such as gametogenesis. In the caging study, average temperatures appeared to have a greater effect on the metabolome than contaminants, despite a large concentration gradient in polycyclic aromatic hydrocarbons residues measured in passive samplers and mussel tissue. Conversely, significant differences between the metabolome of mussels collected in situ from all three contaminated sites and the offshore reference site were observed. Overall, these findings highlight the importance of contextualizing the effects of environmental conditions and reproductive processes on the metabolome of model organisms to facilitate the wider use of this technique for biomonitoring and environmental health assessments. Environ Toxicol Chem 2024;43:307-323. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Bivalvos , Dreissena , Animales , Dreissena/fisiología , Ecosistema , Estuarios , Wisconsin
6.
Environ Pollut ; 318: 120938, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572271

RESUMEN

Projected water temperature increases based on predicted climate change scenarios and concomitant pesticide exposure raises concern about the responses of aquatic organisms. To better understand the effect of pesticide mixtures and influence of water temperature to fish, juvenile Chinook salmon (Oncorhynchus tshawytscha) were dietarily exposed to a mixture of legacy and current use pesticides (p,p'-DDE, bifenthrin, chlorpyrifos, esfenvalerate, and fipronil) at concentrations detected from field-collected prey items in the Sacramento-San Joaquin Delta, California (Delta) and exposed under current and predicted future water temperature scenarios, 11, 14, or 17 °C, for 14 days. The expression of a subset of genes (deiodinase 2-dio2, gonadotropin releasing hormone 2-gnrh2, and catechol-o-methyltransferase-comt) involved in neuroendocrine, dopaminergic, and olfactory function previously shown to be altered by individual pesticide exposures germane to this study were determined and olfactory function assessed using a Y-maze behavioral assay. When total body burdens of pesticides were measured, a significant decrease in dio2 expression was observed in Chinook salmon exposed at 14 °C compared to fish kept at 11 °C. Increases in gnrh2 expression were also observed in fish exposed to 14 °C. Similarly, increases in comt expression was noted at 14 and 17 °C. Additionally, altered expression of all transcripts was observed, showing interactions between temperature and individual pesticide concentrations. Chinook salmon spent significantly more time actively avoiding the odorant arm at baseline conditions of 11 °C in the Y-maze. At higher temperatures, Chinook spent significantly more time not making a choice between the odorant or clean arm following exposure to the low pesticide mixture, relative to 11 °C. These results suggest that dietary exposure to pesticide mixtures can potentially induce neuroendocrine effects and behavior. Impaired olfactory responses exhibited by Chinook salmon could have implications for predator avoidance in the wild under increased temperature scenarios and impact populations in the future.


Asunto(s)
Plaguicidas , Animales , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Salmón/metabolismo , Temperatura , Catecol O-Metiltransferasa/metabolismo , Exposición Dietética
7.
Environ Pollut ; 292(Pt B): 118479, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34752791

RESUMEN

The 2011 Tohoku earthquake-tsunami and the subsequent nuclear accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS) led to large-scale radionuclide contamination of the marine and freshwater environment. Monitoring studies of marine food products in the Fukushima region have generally demonstrated a declining trend in radiocaesium concentrations. However, the accumulation and elimination of radiocaesium and potential biological effects remain poorly understood for freshwater biota inhabiting highly contaminated areas at Fukushima. Consequently, the present study aimed to assess radiocaesium accumulation and developmental effects on the commercially important catadromous Japanese mitten crab, Eriocheir japonica. E. japonica were collected from four sites along a gradient of radionuclide contamination 4-44 km in distance from the FDNPS in 2017. To determine potential developmental effects, fluctuating asymmetry (FA) was used as a measure of developmental stability. Combined 134Cs and 137Cs values for whole E. japonica from highly contaminated sites 4 and 16 km in distance from the FDNPS were 3040 ± 521 and 2250 ± 908 Bq kg-1 wet weight respectively, 30 and 22 times greater than the Japanese standard limit of 100 Bq kg-1. Estimated total dose rates based on radiocaesium concentrations in whole crabs and sediment ranged from 0.016 to 37.7 µGy h-1. No significant relationship between radiocaesium accumulation and FA was recorded, suggesting that chronic radiation exposure at Fukushima is not inducing developmental effects in E. japonica as measured using fluctuating asymmetry. Furthermore, estimated dose rates were below proposed regulatory limits where significant deleterious effects are expected. The present study will aid in the understanding of the long-term consequences of radiation exposure for non-human biota and the management of radioactively contaminated environments.


Asunto(s)
Accidente Nuclear de Fukushima , Exposición a la Radiación , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Japón , Contaminantes Radiactivos del Agua/análisis
8.
Chemosphere ; 298: 134174, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35276115

RESUMEN

The Sacramento River watershed, California, provides important rearing and migratory habitat for several species of conservation concern. Studies have suggested significant benefits for juvenile fish rearing in floodplain habitats of the watershed compared to the mainstem Sacramento River. However, the potential for contaminant exposure in each of these two habitats is poorly understood. Consequently, the present study aimed to determine the distribution and occurrence of bioavailable pesticides within two known salmon habitats using a suite of approaches including exhaustive chemical extraction, single-point Tenax extraction (SPTE) and ex situ passive sampling. Sediment samples were collected from sites within both habitats twice annually in 2019 and 2020, with inundation of the floodplain and high flows for both areas in 2019 and low flow conditions observed in 2020. Sediment characteristics including total organic carbon, black carbon and particle size distribution were determined to elucidate the influence of physical characteristics on pesticide distribution. Using exhaustive extractions, significantly greater sediment concentrations of organochlorines were observed in the floodplain compared to the Sacramento River in both years, with bioaccessible organochlorine concentrations also significantly greater in the floodplain (ANOVA, p < 0.05). Using both SPTEs and exhaustive extractions, significantly fewer pesticides were detected across both sites under low flow conditions as compared to high flow conditions (Poisson regression, p < 0.05). Sediment characteristics including percent fines and black carbon had significant positive relationships with total and bioaccessible pyrethroid and organochlorine concentrations. Fewer analytes were detected using low-density polyethylene (LDPE) passive samplers as compared to SPTEs, suggesting greater sensitivity of the Tenax technique for bioavailability assessments. These findings suggest that threatened juvenile fish populations rearing on the floodplain may have greater exposure to organochlorines than fish inhabiting adjacent riverine habitats, and that pesticide exposure of resident biota may be exacerbated during high-flow conditions.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , Animales , Disponibilidad Biológica , Carbono , Ecosistema , Sedimentos Geológicos , Plaguicidas/análisis , Ríos , Salmón , Contaminantes Químicos del Agua/análisis
9.
Environ Pollut ; 314: 120308, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181938

RESUMEN

Aquatic organisms are exposed to complex mixtures of pesticides in the environment, but traditional risk assessment approaches typically only consider individual compounds. In conjunction with exposure to pesticide mixtures, global climate change is anticipated to alter thermal regimes of waterways, leading to potential co-exposure of biota to elevated temperatures and contaminants. Furthermore, most studies utilize aqueous exposures, whereas the dietary route of exposure may be more important for fish owing to the hydrophobicity of many pesticides. Consequently, the current study aimed to determine the effects of elevated temperatures and dietary pesticide mixtures on swimming performance and lipid metabolism of juvenile Chinook salmon, Oncorhynchus tshawytscha. Fish were fed pesticide-dosed pellets at three concentrations and three temperatures (11, 14 and 17 °C) for 14 days and swimming performance (Umax) and expression of genes involved in lipid metabolism and energetics were assessed (ATP citrate lyase, fatty acid synthase, farnesoid x receptor and liver x receptor). The low-pesticide pellet treatment contained five pesticides, p,p'-DDE, bifenthrin, esfenvalerate, chlorpyrifos and fipronil at concentrations based on prey items collected from the Sacramento River (CA, USA) watershed, with the high-pesticide pellet treatment containing a six times higher dose. Temperature exacerbated effects of pesticide exposure on swimming performance, with significant reductions in Umax of 31 and 23% in the low and high-pesticide pellet groups relative to controls at 17 °C, but no significant differences in Umax among pesticide concentrations at 11 or 14 °C. At 14 °C there was a significant positive relationship between juvenile Chinook salmon pesticide body residues and expression of ATP citrate lyase and fatty acid synthase, but an inverse relationship and significant downregulation at 17 °C. These findings suggest that temperature may modulate effects of environmentally relevant pesticide exposure on salmon, and that pesticide-induced impairment of swimming performance may be exacerbated under future climate scenarios.


Asunto(s)
Cloropirifos , Plaguicidas , Animales , Salmón/metabolismo , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Exposición Dietética , Cloropirifos/metabolismo , Temperatura , Agua/metabolismo , Natación , Diclorodifenil Dicloroetileno/metabolismo , Receptores X del Hígado/metabolismo , ATP Citrato (pro-S)-Liasa/metabolismo , Peces , Mezclas Complejas , Ácido Graso Sintasas/metabolismo , Expresión Génica , Lípidos
10.
Chemosphere ; 299: 134393, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35337826

RESUMEN

Recent studies demonstrated pyrethroid resistance associated with voltage-gated sodium channel mutations in populations of the epibenthic amphipod, Hyalella azteca. Resistant populations were able to tolerate and bioconcentrate pyrethroids at concentrations significantly higher than toxic levels for non-resistant populations. In conjunction with elevated bioconcentration potential, environmental alteration particularly as a result of global climate change is anticipated to significantly alter abiotic parameters including temperature and salinity. These changes are expected to influence uptake and biotransformation of contaminants. Thus, the aims of the current study were a) to examine the bioconcentration potential of permethrin in two pyrethroid-resistant clades of H. azteca and b) assess the influence of temperature and salinity changes on toxicokinetic parameters. Two pyrethroid-resistant clades of H. azteca were exposed to 14C-permethrin at three salinities (0.2, 1.0 and 6.0 practical salinity units (PSU)) and temperatures (18, 23 and 28 °C). Tests were conducted for up to 36 h and uptake, elimination and biotransformation rates were calculated. Both populations demonstrated bioconcentration factors (BCFs) between five and seven times greater than published data for non-resistant H. azteca, with significant differences between clades. Calculated BCF values were comparable to field populations of resistant H. azteca, emphasizing the potential for elevated pyrethroid bioconcentration in the natural environment and increased exposure for predators consuming pyrethroid-resistant aquatic invertebrates. Alterations to temperature and salinity had no statistically significant effect on uptake or parent compound half-life in either population, though biotransformation was elevated at higher temperatures in both populations. Salinity had a variable effect between the two populations, with lower BCF values at 1.0 PSU in clade D H. azteca and greater BCFs at 6.0 PSU in clade C H. azteca. This is the first study to demonstrate the potential for future climate scenarios to influence toxicokinetics in pyrethroid-resistant aquatic organisms.


Asunto(s)
Anfípodos , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Insecticidas/análisis , Permetrina/metabolismo , Permetrina/toxicidad , Piretrinas/metabolismo , Salinidad , Temperatura , Toxicocinética , Contaminantes Químicos del Agua/análisis
11.
Environ Pollut ; 303: 119102, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35257807

RESUMEN

Juvenile Chinook salmon (Oncorhynchus tshawytscha) of the Sacramento River system encounter many anthropogenically-induced stressors while rearing and migrating to the Pacific Ocean. Located in a prominent agricultural region, the watershed serves as a source of notable contaminants including pesticides. Salmon rearing in riverine and floodplain areas are potentially exposed to these compounds via dietary exposure, which can vary based on selected food webs. Previous studies have suggested that juvenile Chinook salmon rearing in riverine and floodplain environments of the Sacramento River watershed are characterized by different dietary preferences, with potential for contrasting pesticide exposure between habitats. To examine the potential for pesticide exposure, juvenile Chinook salmon and known dietary items were collected in the mainstem Sacramento River and an adjacent floodplain, the Yolo Bypass, in 2019 and 2020, and analyzed for 33 pesticides, including degradates and isomers. Organochlorine pesticides including the DDX group (p,p'-DDT, p,p'-DDD and p,p'-DDE) were prevalent in all examined biota. There was a significantly greater number of total pesticide detections across all classes in zooplankton compared to macroinvertebrates, coupled with higher bifenthrin concentrations in zooplankton across regions and years, which may indicate different exposure potential depending on fish dietary preferences. Detection frequencies and concentrations of organochlorines were higher in prey items during flooding than in drought conditions, suggesting resuspension of legacy compounds. Significantly higher concentrations of organochlorines were recorded in floodplain rearing fish compared to the Sacramento River. These findings suggest that within these habitats, juvenile Chinook salmon feeding primarily on zooplankton within the water column may be exposed to a greater range of pesticides than those feeding on benthic macroinvertebrates, and that the benefits of floodplain rearing may come at a cost of increased organochlorine exposure.


Asunto(s)
Hidrocarburos Clorados , Residuos de Plaguicidas , Plaguicidas , Animales , DDT , Ecosistema , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Ríos , Salmón , Zooplancton
12.
Aquat Toxicol ; 233: 105793, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33667916

RESUMEN

Sperm quantity/quality are significant reproductive endpoints with clear links to population level dynamics. Amphipods are important model organisms in environmental toxicology. Despite this, field monitoring of male fertility in invertebrates has rarely been used in monitoring programs. The aim of this study was to compare sperm quality/quantity in an amphipod collected at six UK locations with differing water quality. Due to low sperm counts and an observed lack of relationship between sperm count and weight in amphipods collected from a nationally protected conservation area (Langstone Harbour, England), we also compared datasets from this site over a decade to determine the temporal significance of this finding. One collection to evaluate a female reproductive endpoint was also performed at this site. Interestingly, this harbour consistently presented some of the lowest sperm counts comparable to highly industrial sites and low eggs number from females. Amphipods collected from all the sites, except from Langstone Harbour, presented strong positive correlations between sperm count and weight. Given Langstone Harbour has several international and national protected statutes primarily for marine life and birds, our results indicate that E. marinus, one important food component for wading birds, might be impacted by unknown reproductive stressors. These unknown stressors maybe related to agricultural runoff, leachate from historical landfills and effluent from storm water overflows. This study highlights the importance of exploring new reproductive endpoints such as sperm quantity/quality in marine monitoring programs.


Asunto(s)
Anfípodos/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Monitoreo del Ambiente/métodos , Espermatozoides/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Anfípodos/crecimiento & desarrollo , Animales , Ecotoxicología , Inglaterra , Femenino , Humanos , Masculino , Dinámica Poblacional , Reproducción/efectos de los fármacos , Recuento de Espermatozoides , Espermatozoides/citología
13.
Environ Pollut ; 275: 116545, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33578317

RESUMEN

Global climate change (GCC) significantly affects aquatic ecosystems. Continual use of pyrethroid insecticides results in contamination of these ecosystems and concurrent GCC raises the potential for synergistic effects. Resistance to pyrethroids has been documented in Hyalella azteca, a common epibenthic amphipod and model organism. Resistant H. azteca can bioconcentrate elevated amounts of pyrethroids and represent a threat to consumers via trophic transfer. In the present study, a predator of H. azteca, the inland silverside (Menidia beryllina), was used to examine the impacts of GCC on pyrethroid bioaccumulation via trophic transfer from resistant prey organisms. M. beryllina were fed 14C-permethrin dosed pyrethroid-resistant H. azteca for 14 days at three salinities (6, 13 and 20 practical salinity units (PSU)) and two temperatures (18 and 23 °C). Fish were analyzed for total body residues, percent parent compound and percent metabolites. Gene expression in liver and brain tissue were evaluated to assess whether dietary bioaccumulation of permethrin would impact detoxification processes, metabolism, and general stress responses. M. beryllina bioaccumulated significant amounts of permethrin across all treatments, ranging from 39 to 557 ng g-1 lipid. No statistically significant effect of temperature was found on total bioaccumulation. Salinity had a significant effect on total bioaccumulation, owing to greater bioaccumulation at 6 PSU compared to 13 and 20 PSU, which may be due to alterations to xenobiotic elimination. Permethrin bioaccumulation and the interaction with temperature and salinity elicited significant transcriptional responses in genes relating to detoxification, growth, development, and immune response. Given the increased prevalence of pesticide-resistant aquatic invertebrates, GCC-induced alterations to temperature and salinity, and the predicted increase in pesticide usage, these findings suggest trophic transfer may play an important role in pesticide bioaccumulation and effects in predatory fish.


Asunto(s)
Anfípodos , Insecticidas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Ecosistema , Peces , Insecticidas/análisis , Insecticidas/toxicidad , Permetrina/toxicidad , Transcriptoma , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Sci Total Environ ; 753: 141945, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32911165

RESUMEN

Global climate change continues to cause alterations in environmental conditions which can be detrimental to aquatic ecosystem health. The development of pesticide resistance in organisms such as Hyalella azteca can lead to increased susceptibility to environmental change. This research provides a robust assessment of the effects of alterations in salinity on the fitness of H. azteca. Full-life cycle bioassays were conducted with non-resistant and pyrethroid-resistant H. azteca cultured under two salinity conditions representing a rise from freshwater control (0.2 psu) to increased salinity due to salt-water intrusion, reduced snowpack and evaporative enrichment (6.0 psu). Additionally, the upper thermal tolerance was defined for each population at each salinity. Pyrethroid-resistant H. azteca exhibited reduced thermal tolerance; however, they produced more offspring per female than non-resistant animals. Compared to the low salinity water, both non-resistant and pyrethroid-resistant H. azteca produced more offspring, grew larger (based on dry mass), and produced larger offspring in elevated salinity, although pyrethroid-resistant animals had lower survival and lipid levels. This study provides fundamental information about the fitness potential of H. azteca in a changing climate, suggesting advantages for non-resistant animals under future climate scenarios. In addition, this research further supports the need to consider the effects of global climate change when conducting risk assessment of contaminants of concern, as well as the contribution of contaminants when investigating climate change impacts on populations, as exposure may contribute to niche contraction.


Asunto(s)
Anfípodos , Insecticidas , Contaminantes Químicos del Agua , Animales , Cambio Climático , Ecosistema , Femenino , Insecticidas/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
15.
Environ Pollut ; 291: 118217, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34583267

RESUMEN

Chlorpyrifos, an organophosphate (OP) insecticide, is prevalent in aquatic systems globally and is often implicated in aquatic toxicity during storm events. Chlorpyrifos induces toxicity by inhibition of acetylcholinesterase (AChE) activity, which has been related to alterations to fish swimming performance. Resistance to organophosphate insecticides, including chlorpyrifos, is prevalent in populations of the epibenthic amphipod Hyalella azteca in areas with known OP exposure. Previous studies have demonstrated an elevated bioaccumulation potential of insecticide-resistant prey items, however the potential for trophic transfer of chlorpyrifos from OP-resistant prey items and associated neurotoxic effects in fish predators has not been studied. Consequently, the present study aimed to determine the potential for trophic transfer of chlorpyrifos from OP-resistant H. azteca to a known predator, the inland silverside, Menidia beryllina at two temperatures (18 and 23 °C) to simulate temperature changes associated with global climate change (GCC). Fish were fed either 14C-chlorpyrifos-dosed H. azteca or control animals for 7 d, after which total bioaccumulation, percent parent chlorpyrifos, brain AChE activity and swimming performance (ramp-Ucrit) were determined. Fish fed chlorpyrifos-dosed H. azteca bioaccumulated chlorpyrifos ranging from 29.9 to 1250 ng/g lipid, demonstrating the potential for trophic transfer. Lower bioaccumulation and greater biotransformation were observed in M. beryllina at 23 °C as compared to 18 °C, though this was not statistically significant. A significant 36.5% reduction in brain AChE activity was observed in fish fed chlorpyrifos-dosed H. azteca at 23 °C only, which may be attributed to increased biotransformation of parent chlorpyrifos to more potent AChE-inhibiting metabolites. Dietary chlorpyrifos exposure had no significant effect on swimming performance in M. beryllina, though ramp-Ucrit was significantly increased by 25% at 23 as compared to 18 °C. These findings confirm the potential for trophic transfer of chlorpyrifos from OP-resistant prey to fish predators and the potential for elevated temperatures to exacerbate the neurotoxic effects of chlorpyrifos.


Asunto(s)
Anfípodos , Cloropirifos , Insecticidas , Contaminantes Químicos del Agua , Acetilcolinesterasa , Animales , Cloropirifos/toxicidad , Insecticidas/análisis , Natación , Temperatura , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Ecol Evol ; 9(18): 10135-10144, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31624541

RESUMEN

Analysis of genetic diversity represents a fundamental component of ecological risk assessments in contaminated environments. Many studies have assessed the genetic implications of chronic radiation exposure at Chernobyl, generally recording an elevated genetic diversity and mutation rate in rodents, plants, and birds inhabiting contaminated areas. Only limited studies have considered genetic diversity in aquatic biota at Chernobyl, despite the large number of freshwater systems where elevated dose rates will persist for many years. Consequently, the present study aimed to assess the effects of chronic radiation exposure on genetic diversity in the freshwater crustacean, Asellus aquaticus, using a genome-wide SNP approach (Genotyping-by-sequencing). It was hypothesized that genetic diversity in A. aquaticus would be positively correlated with dose rate. A. aquaticus was collected from six lakes in Belarus and the Ukraine ranging in dose rate from 0.064 to 27.1 µGy/hr. Genotyping-by-sequencing analysis was performed on 74 individuals. A significant relationship between geographical distance and genetic differentiation confirmed the Isolation-by-Distance model. Conversely, no significant relationship between dose rate and genetic differentiation suggested no effect of the contamination gradient on genetic differentiation between populations. No significant relationship between five measures of genetic diversity and dose rate was recorded, suggesting that radiation exposure has not significantly influenced genetic diversity in A. aquaticus at Chernobyl. This is the first study to adopt a genome-wide SNP approach to assess the impacts of environmental radiation exposure on biota. These findings are fundamental to understanding the long-term success of aquatic populations in contaminated environments at Chernobyl and Fukushima.

17.
Sci Total Environ ; 628-629: 11-17, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29427871

RESUMEN

Nuclear accidents such as Chernobyl and Fukushima have led to contamination of the environment that will persist for many years. The consequences of chronic low-dose radiation exposure for non-human organisms inhabiting contaminated environments remain unclear. In radioecology, crustaceans are important model organisms for the development of environmental radioprotection. Previous laboratory studies have demonstrated deleterious effects of radiation exposure on crustacean reproduction. However, no studies have documented the effects of chronic radiation exposure on the reproduction of natural crustacean populations. Based on data from laboratory exposures, we hypothesised that populations of the freshwater isopod Asellus aquaticus exposed to radiation for thirty years at Chernobyl would display reduced reproductive output and altered timing of reproduction. To test this hypothesis, A. aquaticus was collected from six lakes at Chernobyl over two years with total dose rates ranging from 0.06-27.1µGy/h. No significant differences in the fecundity, mass of broods or proportion of reproducing female A. aquaticus were recorded. Significant differences in the body mass of gravid females were recorded suggesting different timings of reproduction, however this was not related to radiation contamination. No significant effect of a range of environmental parameters on A. aquaticus reproduction was recorded. Our data suggests current dose rates at Chernobyl are not causing discernible effects on the reproductive output of A. aquaticus. This study is the first to assess the effects of chronic low-dose radiation exposure on the reproductive output of an aquatic invertebrate at Chernobyl. These findings are consistent with proposed radiological protection benchmarks for the maintenance of wildlife populations and will assist in management of environments impacted by radiation.


Asunto(s)
Isópodos/fisiología , Monitoreo de Radiación/métodos , Reproducción/efectos de la radiación , Contaminantes Radiactivos del Agua/toxicidad , Animales , Animales Salvajes , Accidente Nuclear de Chernóbil , Relación Dosis-Respuesta en la Radiación , Femenino , Agua Dulce , Isópodos/efectos de la radiación , Radioisótopos
18.
Sci Total Environ ; 576: 242-250, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27788439

RESUMEN

Effects of long-term, environmentally relevant doses of radiation on biota remain unclear due to a lack of studies following chronic exposure in contaminated environments. The 1986 Chernobyl accident dispersed vast amounts of radioactivity into the environment which persists to date. Despite three decades of research, impacts of the incident on non-human organisms continues to be contested within the scientific literature. The present study assessed the impact of chronic radiation exposure from Chernobyl on the developmental stability of the model aquatic isopod, Asellus aquaticus using fluctuating asymmetry (FA) as an indicator. Fluctuating asymmetry, defined as random deviations from the expected perfect bilateral symmetry of an organism, has gained prominence as an indicator of developmental stability in ecotoxicology. Organisms were collected from six lakes along a gradient of radionuclide contamination in Belarus and the Ukraine. Calculated total dose rates ranged from 0.06-27.1µGy/h. Fluctuating asymmetry was assessed in four meristic and one metrical trait. Significant differences in levels of pooled asymmetry were recorded between sample sites independent of sex and specific trait measured. However, there was no correlation of asymmetry with radiation doses, suggesting that differences in asymmetry were not attributed to radionuclide contamination and were driven by elevated asymmetry at a single site. No correlation between FA and measured environmental parameters suggested a biotic factor driving observed FA differences. This study appears to be the first to record no evident increase in developmental stability of biota from the Chernobyl region. These findings will aid in understanding the response of organisms to chronic pollutant exposure and the long term effects of large scale nuclear incidents such as Chernobyl and Fukushima.


Asunto(s)
Accidente Nuclear de Chernóbil , Monitoreo del Ambiente , Isópodos/efectos de la radiación , Contaminantes Radiactivos/análisis , Animales , Radioisótopos , República de Belarús , Factores de Tiempo , Ucrania
19.
Aquat Toxicol ; 167: 55-67, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26261880

RESUMEN

Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive. Current phyla-specific dose levels and limits proposed by major regulatory bodies were found to be inadequate to protect species across a range of endpoints including morbidity, mutation and reproduction and examples are discussed within. These findings serve to prioritise areas for future research that will significantly advance understanding of radiation-induced effects in aquatic invertebrates and consequently enhance ability to predict the impacts of radioactive releases on the environment.


Asunto(s)
Crustáceos/efectos de la radiación , Radiación Ionizante , Contaminantes Radiactivos del Agua/toxicidad , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA