Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Pharmacol Sci ; 147(1): 1-8, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34294359

RESUMEN

Tyrosine kinase inhibitors (TKIs) are widely utilized in clinical practice to treat carcinomas, but secondary tumor resistance during chronic treatment can be problematic. AKR1B1 and AKR1B10 of the aldo-keto reductase (AKR) superfamily are highly expressed in cancer cells and are believed to be involved in drug resistance. The aim of this study was to understand how TKI treatment of chronic myelogenous leukemia (CML) cells changes their glucose metabolism and if inhibition of AKRs can sensitize CML cells to TKIs. K562 cells were treated with the TKIs imatinib, nilotinib, or bosutinib, and the effects on glucose metabolism, cell death, glutathione levels, and AKR levels were assessed. To assess glucose dependence, cells were cultured in normal and low-glucose media. Pretreatment with AKR inhibitors, including epalrestat, were used to determine AKR-dependence. Treatment with TKIs increased intracellular glucose, AKR1B1/10 levels, glutathione oxidation, and nuclear translocation of nuclear factor erythroid 2-related factor 2, but with minimal cell death. These effects were dependent on intracellular glucose accumulation. Pretreatment with epalrestat, or a selective inhibitor of AKR1B10, exacerbated TKI-induced cell death, suggesting that especially AKR1B10 was involved in protection against TKIs. Thus, by disrupting cell protective mechanisms, AKR inhibitors may render CML more susceptible to TKI treatments.


Asunto(s)
Aldo-Ceto Reductasas/antagonistas & inhibidores , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Aldehído Reductasa , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/fisiología , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Resistencia a Antineoplásicos , Glucosa/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Nitrilos/farmacología , Nitrilos/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Rodanina/análogos & derivados , Rodanina/farmacología , Rodanina/uso terapéutico , Tiazolidinas/farmacología , Tiazolidinas/uso terapéutico
2.
Sci Rep ; 9(1): 18699, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822748

RESUMEN

Most cancer cells rely on glycolysis to generate ATP, even when oxygen is available. However, merely inhibiting the glycolysis is insufficient for the eradication of cancer cells. One main reason for this is that cancer cells have the potential to adapt their metabolism to their environmental conditions. In this study, we investigated how cancer cells modify their intracellular metabolism when glycolysis is suppressed, using PANC-1 pancreatic cancer cells and two other solid tumor cell lines, A549 and HeLa. Our study revealed that glycolytically suppressed cells upregulated mitochondrial function and relied on oxidative phosphorylation (OXPHOS) to obtain the ATP necessary for their survival. Dynamic changes in intracellular metabolic profiles were also observed, reflected by the reduced levels of TCA cycle intermediates and elevated levels of most amino acids. Glutamine and glutamate were important for this metabolic reprogramming, as these were largely consumed by influx into the TCA cycle when the glycolytic pathway was suppressed. During the reprogramming process, activated autophagy was involved in modulating mitochondrial function. We conclude that upon glycolytic suppression in multiple types of tumor cells, intracellular energy metabolism is reprogrammed toward mitochondrial OXPHOS in an autophagy-dependent manner to ensure cellular survival.


Asunto(s)
Glucólisis/fisiología , Mitocondrias/metabolismo , Neoplasias/metabolismo , Células A549/metabolismo , Adenosina Trifosfato/metabolismo , Autofagia , Línea Celular Tumoral , Supervivencia Celular , Ciclo del Ácido Cítrico , Citoplasma/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Células HeLa/metabolismo , Humanos , Metaboloma , Fosforilación Oxidativa , Neoplasias Pancreáticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA