Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biol Chem ; 299(4): 104587, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889584

RESUMEN

Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow-derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-γ (IFN-γ) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigen-presenting and co-stimulatory molecules but not that of co-inhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-γ-producing T cells upon antigen presentation.


Asunto(s)
Células Dendríticas , Linfocitos T , Ratones , Animales , Presentación de Antígeno , Activación de Linfocitos , Adenosina Trifosfato/metabolismo
2.
J Pharmacol Exp Ther ; 389(1): 76-86, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290974

RESUMEN

Mast cell stabilizers, including disodium cromoglycate (DSCG), were found to have potential as the agonists of an orphan G protein-coupled receptor, GPR35, although it remains to be determined whether GPR35 is expressed in mast cells and involved in suppression of mast cell degranulation. Our purpose in this study is to verify the expression of GPR35 in mast cells and to clarify how GPR35 modulates the degranulation. We explored the roles of GPR35 using an expression system, a mast cell line constitutively expressing rat GPR35, peritoneal mast cells, and bone marrow-derived cultured mast cells. Immediate allergic responses were assessed using the IgE-mediated passive cutaneous anaphylaxis (PCA) model. Various known GPR35 agonists, including DSCG and newly designed compounds, suppressed IgE-mediated degranulation. GPR35 was expressed in mature mast cells but not in immature bone marrow-derived cultured mast cells and the rat mast cell line. Degranulation induced by antigens was significantly downmodulated in the mast cell line stably expressing GPR35. A GPR35 agonist, zaprinast, induced a transient activation of RhoA and a transient decrease in the amount of filamentous actin. GPR35 agonists suppressed the PCA responses in the wild-type mice but not in the GPR35-/- mice. These findings suggest that GPR35 should prevent mast cells from undergoing degranulation induced by IgE-mediated antigen stimulation and be the primary target of mast cell stabilizers. SIGNIFICANCE STATEMENT: The agonists of an orphan G protein-coupled receptor, GPR35, including disodium cromoglycate, were found to suppress degranulation of rat and mouse mature mast cells, and their antiallergic effects were abrogated in the GPR35-/- mice, indicating that the primary target of mast cell stabilizers should be GPR35.


Asunto(s)
Cromolin Sódico , Estabilizadores de Mastocitos , Ratas , Ratones , Animales , Cromolin Sódico/farmacología , Estabilizadores de Mastocitos/farmacología , Mastocitos , Receptores Acoplados a Proteínas G/metabolismo , Inmunoglobulina E/metabolismo , Inmunoglobulina E/farmacología , Degranulación de la Célula
3.
Microbiol Immunol ; 67(5): 264-273, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892201

RESUMEN

Dendritic cells (DCs) take up antigens derived from pathogens such as bacteria and viruses, and from tumor cells and induce the activation of antigen-specific T cells through major histocompatibility complex (MHC)-mediated antigen presentation. Mainstream cigarette smoke extract (CSE) has various effects, and the effects of its major components, nicotine and tar, have been analyzed extensively. Recently, the physiological effects of nicotine- and tar-removed CSE (cCSE) have also been reported. However, the effects of cCSE on DC-mediated immune responses remain unknown. In this study, we found that cCSE enhanced lipopolysaccharide (LPS)-stimulated induction of the expression of MHC-I and MHC-II on the cell surface of mouse bone marrow-derived DCs (BMDCs). In contrast, cCSE suppressed the induction of CD86 induced by stimulation with curdlan and interferon-γ (IFN-γ). In addition, cCSE suppressed the production of IL-12, IL-23, and IL-10 by LPS and curdlan stimulation. In the presence of cCSE, LPS-stimulated BMDCs showed enhanced activation of CD4 and CD8 T cells and increased IL-2 production from T cells by antigen presentation in a mixed-leukocyte reaction assay. In contrast, cCSE did not affect the activation of T cells by curdlan- or IFN-γ-stimulated BMDCs, and curdlan-stimulated BMDCs suppressed IL-17 production from T cells and enhanced IFN-γ production. These results suggest that cCSE has different effects on the activation signals induced by LPS, curdlan, and IFN-γ in BMDCs and modulates the antigen presentation function of BMDCs.


Asunto(s)
Presentación de Antígeno , Fumar Cigarrillos , Ratones , Animales , Nicotina/farmacología , Nicotina/metabolismo , Lipopolisacáridos/metabolismo , Médula Ósea/metabolismo , Interferón gamma/metabolismo , Células Dendríticas , Ratones Endogámicos C57BL
4.
J Bacteriol ; 204(12): e0038722, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409129

RESUMEN

Vancomycin resistance of Gram-positive bacteria poses a serious health concern around the world. In this study, we searched for vancomycin-tolerant mutants from a gene deletion library of a model Gram-positive bacterium, Bacillus subtilis, to elucidate the mechanism of vancomycin resistance. We found that knockout of ykcB, a glycosyltransferase that is expected to utilize C55-P-glucose to glycosylate cell surface components, caused reduced susceptibility to vancomycin in B. subtilis. Knockout of ykcB altered the susceptibility to multiple antibiotics, including sensitization to ß-lactams and increased the pathogenicity to silkworms. Furthermore, the ykcB-knockout mutant had (i) a decreased amount of lipoteichoic acid, (ii) decreased biofilm formation, and (iii) an increased content of diglucosyl diacylglycerol, a glycolipid that shares a precursor with C55-P-glucose. These phenotypes and vancomycin tolerance were abolished by knockout of ykcC, a gene in the same operon with ykcB probably involved in C55-P-glucose synthesis. Overexpression of ykcC enhanced vancomycin tolerance in both the parent strain and the ykcB-knockout mutant. These findings suggest that ykcB deficiency induces structural changes of cell surface molecules depending on the ykcC function, leading to reduced susceptibility to vancomycin, decreased biofilm formation, and increased pathogenicity to silkworms. IMPORTANCE Although vancomycin is effective against Gram-positive bacteria, vancomycin-resistant bacteria are a major public health concern. While the vancomycin-resistance mechanisms of clinically important bacteria such as Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae are well studied, they remain unclear in other Gram-positive bacteria. In the present study, we searched for vancomycin-tolerant mutants from a gene deletion library of a model Gram-positive bacterium, Bacillus subtilis, and found that knockout of a putative glycosyltransferase, ykcB, caused vancomycin tolerance in B. subtilis. Notably, unlike the previously reported vancomycin-resistant bacterial strains, ykcB-deficient B. subtilis exhibited increased virulence while maintaining its growth rate. Our results broaden the fundamental understanding of vancomycin-resistance mechanisms in Gram-positive bacteria.


Asunto(s)
Antibacterianos , Bacillus subtilis , Vancomicina , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Glicosiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología , Farmacorresistencia Bacteriana
5.
J Immunol ; 204(12): 3077-3085, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32358018

RESUMEN

Extracellular ATP released from stimulated and/or damaged cells modulates physiological responses via stimulation of various purinoceptors. We previously showed that ATP potentiated the Ag-induced mast cell (MC) degranulation via purinoceptors pharmacologically similar to the ionotropic P2X4 receptor. In this study, we investigated the role of P2X4 receptor in MC degranulation induced by stimulation of IgE-FcεRI complex with Ag, using bone marrow-derived MCs (BMMCs) prepared from wild type and P2X4 receptor-deficient (P2rx4-/- ) mice. ATP significantly increased Ag-induced degranulation in BMMCs prepared from wild type mice. This effect of ATP was reduced in BMMCs prepared from P2rx4-/- mice. The potentiating effect of ATP was restored by expressing P2X4 receptor in P2rx4-/- BMMCs. The P2X4 receptor-mediated effects were maintained even after differentiating into the connective tissue-type MCs. P2X4 receptor stimulation did not affect the Ag-induced Ca2+ response but enhanced Ag-induced early signals, such as tyrosine phosphorylation of Syk and phospholipase C-γ. Interestingly, these effects of ATP on Syk phosphorylation were not impaired by pretreatment with Cu2+, an inhibitor of the P2X4 receptor channel, or removal of external Ca2+, suggesting that a mechanisms other than Ca2+ influx through ion channel activity may be involved. In vivo experiments revealed that systemic and intradermal passive anaphylaxis responses were significantly alleviated in P2rx4-/- mice. Taken together, the present data suggest that the P2X4 receptor plays an essential role in ATP-induced upregulation of MC degranulation in response to Ag, and also contributes to the Ag-induced allergic response in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antígenos/metabolismo , Degranulación de la Célula/fisiología , Hipersensibilidad/metabolismo , Mastocitos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Anafilaxia/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Calcio/metabolismo , Inmunoglobulina E/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de IgE/metabolismo , Transducción de Señal/fisiología
6.
J Bacteriol ; 203(12): e0051520, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846116

RESUMEN

Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important for understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm infection model and revealed that deletion of the opgGH operon, encoding synthases for osmoregulated periplasmic glucan (OPG), increased the virulence of a nonpathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and an evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm-killing activity of E. coli. In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased antibiotic resistance and virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence in E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR-independent manner. IMPORTANCE The gene mutation types that increase the bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increased E. coli virulence against silkworms. The OPG knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli but also support the usefulness of the bacterial experimental evolution method in the silkworm infection model.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Glucanos/metabolismo , Osmorregulación/fisiología , Periplasma/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucanos/genética , Virulencia
7.
Microbiol Immunol ; 64(9): 585-592, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32757288

RESUMEN

The use of non-human animal models for infection experiments is important for investigating the infectious processes of human pathogenic bacteria at the molecular level. Mammals, such as mice and rabbits, are also utilized as animal infection models, but large numbers of animals are needed for these experiments, which is costly, and fraught with ethical issues. Various non-mammalian animal infection models have been used to investigate the molecular mechanisms of various human pathogenic bacteria, including Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa. This review discusses the desirable characteristics of non-mammalian infection models and describes recent non-mammalian infection models that utilize Caenorhabditis elegans, silkworm, fruit fly, zebrafish, two-spotted cricket, hornworm, and waxworm.


Asunto(s)
Infecciones Bacterianas/microbiología , Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Drosophila melanogaster/microbiología , Gryllidae/microbiología , Pez Cebra/microbiología , Animales , Bacterias/patogenicidad , Bombyx/microbiología , Humanos , Larva/microbiología , Manduca/microbiología , Mariposas Nocturnas/microbiología
8.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905768

RESUMEN

Accumulating evidence suggests that mast cells play critical roles in disruption and maintenance of intestinal homeostasis, although it remains unknown how they affect the local microenvironment. Interleukin-9 (IL-9) was found to play critical roles in intestinal mast cell accumulation induced in various pathological conditions, such as parasite infection and oral allergen-induced anaphylaxis. Newly recruited intestinal mast cells trigger inflammatory responses and damage epithelial integrity through release of a wide variety of mediators including mast cell proteases. We established a novel culture model (IL-9-modified mast cells, MCs/IL-9), in which murine IL-3-dependent bone-marrow-derived cultured mast cells (BMMCs) were further cultured in the presence of stem cell factor and IL-9. In MCs/IL-9, drastic upregulation of Mcpt1 and Mcpt2 was found. Although histamine storage and tryptase activity were significantly downregulated in the presence of SCF and IL-9, this was entirely reversed when mast cells were cocultured with a murine fibroblastic cell line, Swiss 3T3. MCs/IL-9 underwent degranulation upon IgE-mediated antigen stimulation, which was found to less sensitive to lower concentrations of IgE in comparison with BMMCs. This model might be useful for investigation of the spatiotemporal changes of newly recruited intestinal mast cells.


Asunto(s)
Interleucina-9/farmacología , Mastocitos/inmunología , Factor de Células Madre/farmacología , Adenosina Trifosfato/farmacología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/inmunología , Células Cultivadas , Quimasas/metabolismo , Histamina/metabolismo , Inmunoglobulina E/inmunología , Interleucina-3/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/enzimología , Mastocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Células 3T3 Swiss
9.
J Biol Chem ; 292(9): 3909-3918, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082679

RESUMEN

Mast cells are secretory cells that play an important role in host defense by discharging various intragranular contents, such as histamine and serotonin, upon stimulation of Fc receptors. The granules also contain spermine and spermidine, which can act as modulators of mast cell function, although the mechanism underlying vesicular storage remains unknown. Vesicular polyamine transporter (VPAT), the fourth member of the SLC18 transporter family, is an active transporter responsible for vesicular storage of spermine and spermidine in neurons. In the present study, we investigated whether VPAT functions in mast cells. RT-PCR and Western blotting indicated VPAT expression in murine bone marrow-derived mast cells (BMMCs). Immunohistochemical analysis indicated that VPAT is colocalized with VAMP3 but not with histamine, serotonin, cathepsin D, VAMP2, or VAMP7. Membrane vesicles from BMMCs accumulated spermidine upon the addition of ATP in a reserpine- and bafilomycin A1-sensitive manner. BMMCs secreted spermine and spermidine upon the addition of either antigen or A23187 in the presence of Ca2+, and the antigen-mediated release, which was shown to be temperature-dependent and sensitive to bafilomycin A1 and tetanus toxin, was significantly suppressed by VPAT gene RNA interference. Under these conditions, expression of vesicular monoamine transporter 2 was unaffected, but antigen-dependent histamine release was significantly suppressed, which was recovered by the addition of 1 mm spermine. These results strongly suggest that VPAT is expressed and is responsible for vesicular storage of spermine and spermidine in novel secretory granules that differ from histamine- and serotonin-containing granules and is involved in vesicular release of these polyamines from mast cells.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Mastocitos/metabolismo , Poliaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Calcimicina/química , Calcio/química , Catepsina D/química , Exocitosis , Histamina/química , Liberación de Histamina , Inmunohistoquímica , Masculino , Mastocitos/citología , Ratones , Microscopía Fluorescente , Proteínas R-SNARE/metabolismo , Ratas , Ratas Wistar , Vesículas Secretoras/metabolismo , Serotonina/química , Espermidina/metabolismo , Espermina/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo
10.
Eur J Immunol ; 47(1): 60-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27748951

RESUMEN

Accumulating evidence suggests that activated mast cells are involved in contact hypersensitivity, although the precise mechanisms of their activation are still not completely understood. We investigated the potential of common experimental allergens to induce mast cell activation using murine bone marrow-derived cultured mast cells and rat peritoneal mast cells. Among these allergens, 1-chloro-2,4-dinitrobenzene and 1-fluoro-2,4-dinirobenzene (DNFB) were found to induce degranulation of rat peritoneal mast cells. DNFB-induced degranulation is accompanied by cytosolic Ca2+ mobilization and is significantly inhibited by pertussis toxin, U73122 (a phospholipase C inhibitor), and BAPTA (a Ca2+ chelator), raising the possibility that DNFB acts on the G protein-coupled receptors and activates Gi , which induces activation of phospholipase C, as well as known mast cell secretagogues, such as compound 48/80. DNFB could induce mast cell degranulation in the absence of serum proteins and IgE. Structure-activity relationship analyses revealed an inverse correlation between the degree of degranulation and the electron density of the C1 carbon of the DNFB derivatives. These findings raise a possibility that DNFB functions as a potent contact allergen through induction of cutaneous mast cell degranulation.


Asunto(s)
Alérgenos/inmunología , Degranulación de la Célula/inmunología , Dinitrofluorobenceno/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Alérgenos/química , Animales , Calcio/metabolismo , Citocinas/metabolismo , Dinitrofluorobenceno/análogos & derivados , Dinitrofluorobenceno/química , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Masculino , Ratones , Estructura Molecular , Unión Proteica , Multimerización de Proteína , Ratas , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo
11.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562962

RESUMEN

Accumulating evidence suggests that histamine synthesis induced in several types of tumor tissues modulates tumor immunity. We found that a transient histamine synthesis was induced in CD11b⁺Gr-1⁺ splenocytes derived from BALB/c mice transplanted with a syngeneic colon carcinoma, CT-26, when they were co-cultured with CT-26 cells. Significant levels of IFN-γ were produced under this co-culture condition. We explored the modulatory roles of histamine on IFN-γ production and found that several histamine receptor antagonists, such as pyrilamine, diphenhydramine, JNJ7777120, and thioperamide, could significantly suppress IFN-γ production. However, suppression of IFN-γ production by these antagonists was also found when splenocytes were derived from the Hdc-/- BALB/c mice. Suppressive effects of these antagonists were found on IFN-γ production induced by concanavalin A or the combination of an anti-CD3 antibody and an anti-CD28 antibody in a histamine-independent manner. Murine splenocytes were found to express H1 and H2 receptors, but not H3 and H4 receptors. IFN-γ production in the Hh1r-/- splenocytes induced by the combination of an anti-CD3 antibody and an anti-CD28 antibody was significantly suppressed by these antagonists. These findings suggest that pyrilamine, diphenhydramine, JNJ7777120, and thioperamide can suppress IFN-γ production in activated splenocytes in a histamine-independent manner.


Asunto(s)
Antagonistas de los Receptores Histamínicos/farmacología , Interferón gamma/biosíntesis , Bazo/metabolismo , Animales , Línea Celular Tumoral , Histamina/genética , Histamina/metabolismo , Interferón gamma/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Bazo/patología
12.
Anal Chem ; 88(3): 1526-9, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26790581

RESUMEN

Mast cells secrete histamine upon degranulation triggered by various stimuli. Herein, we report the new detection method of mast cell degranulation using the fluorescent probe capable of detection of the released histamine. The probe was designed as the Co(II) complex of a cyanine dye, which shows a turn-on fluorescence signal based on a histamine-induced coordination displacement mechanism. Fluorescence imaging using the cell surface-anchored fluorescent probe enabled the real-time detection of mast cell degranulation induced by various secretagogues.


Asunto(s)
Degranulación de la Célula , Colorantes Fluorescentes/química , Histamina/metabolismo , Mastocitos/citología , Mastocitos/fisiología , Compuestos Organometálicos/química , Análisis de la Célula Individual/métodos , Línea Celular , Cobalto/química , Colorantes Fluorescentes/análisis , Histamina/análisis , Humanos , Estructura Molecular , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 110(50): 20188-93, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277838

RESUMEN

As sentinels of the immune system, dendritic cells (DCs) continuously generate and turnover antigenic peptide-MHC class II complexes (pMHC-II). pMHC-II generation is a complex process that involves many well-characterized MHC-II biosynthetic intermediates; however, the mechanisms leading to MHC-II turnover/degradation are poorly understood. We now show that pMHC-II complexes undergoing clathrin-independent endocytosis from the DC surface are efficiently ubiquitinated by the E3 ubiquitin ligase March-I in early endosomes, whereas biosynthetically immature MHC-II-Invariant chain (Ii) complexes are not. The inability of MHC-II-Ii to serve as a March-I substrate is a consequence of Ii sorting motifs that divert the MHC-II-Ii complex away from March-I(+) early endosomes. When these sorting motifs are mutated, or when clathrin-mediated endocytosis is inhibited, MHC-II-Ii complexes internalize by using a clathrin-independent endocytosis pathway and are now ubiquitinated as efficiently as pMHC-II complexes. These data show that the selective ubiquitination of internalizing surface pMHC-II in March-I(+) early endosomes promotes degradation of "old" pMHC-II and spares forms of MHC-II that have not yet loaded antigenic peptides or have not yet reached the DC surface.


Asunto(s)
Células Dendríticas/inmunología , Endosomas/metabolismo , Complejos Multiproteicos/metabolismo , Péptidos/metabolismo , Biotinilación , Genes MHC Clase II/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Lisosomas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Péptidos/inmunología , Proteolisis , ARN Interferente Pequeño/genética , Ubiquitinación
14.
Eur J Immunol ; 44(1): 204-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24002822

RESUMEN

Mast cells are the major sources of histamine, which is released in response to immunological stimulations. The synthesis of histamine is catalyzed by histidine decarboxylase (HDC). Previous studies have shown that Hdc(-/-) mast cells exhibit aberrant granule morphology with severely decreased granule content. Here, we investigated whether the histamine synthesized in mast cells regulates the granule maturation of murine mast cells. Several genes, including those encoding granule proteases and enzymes involved in heparin biosynthesis, were downregulated in Hdc(-/-) peritoneal mast cells. Impaired granule maturation was also found in Hdc(-/-) BM-derived cultured mast cells when they were cocultured with fibroblasts in the presence of c-kit ligand. Exogenous application of histamine and several H4 receptor agonists restored the granule maturation of Hdc(-/-) cultured mast cells. However, the maturation of granules was largely normal in Hrh4(-/-) peritoneal mast cells. Depletion of cellular histamine with tetrabenazine, an inhibitor of vesicular monoamine transporter-2, did not affect granule maturation. In vivo experiments with mast cell deficient Kit(W) /Kit(W-v) mice indicated that the expression of the Hdc gene in mast cells is required for granule maturation. These results suggest that histamine promotes granule maturation in mast cells and acts as an proinflammatory mediator.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Fibroblastos/inmunología , Histamina/biosíntesis , Mastocitos/inmunología , Vesículas Secretoras/metabolismo , Animales , Degranulación de la Célula , Células Cultivadas , Quimasas/metabolismo , Técnicas de Cocultivo , Femenino , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Triptasas/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(47): 19380-5, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129633

RESUMEN

Major histocompatibility complex class II molecules (MHC-II) on antigen presenting cells (APCs) engage the TCR on antigen-specific CD4 T cells, thereby providing the specificity required for T cell priming and the induction of an effective immune response. In this study, we have asked whether antigen-loaded dendritic cells (DCs) that have been in contact with antigen-specific CD4 T cells retain the ability to stimulate additional naïve T cells. We show that encounter with antigen-specific primed CD4 T cells induces the degradation of surface MHC-II in antigen-loaded DCs and inhibits the ability of these DCs to stimulate additional naïve CD4 T cells. Cross-linking with MHC-II mAb as a surrogate for T-cell engagement also inhibits APC function and induces MHC-II degradation by promoting the clustering of MHC-II present in lipid raft membrane microdomains, a process that leads to MHC-II endocytosis and degradation in lysosomes. Encounter of DCs with antigen-specific primed T cells or engagement of MHC-II with antibodies promotes the degradation of both immunologically relevant and irrelevant MHC-II molecules. These data demonstrate that engagement of MHC-II on DCs after encounter with antigen-specific primed CD4 T cells promotes the down-regulation of cell surface MHC-II in DCs, thereby attenuating additional activation of naïve CD4 T cells by these APCs.


Asunto(s)
Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colesterol/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Reactividad Cruzada/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Endocitosis/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptidos/inmunología , Proteolisis/efectos de los fármacos
16.
Biol Pharm Bull ; 37(1): 81-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24389484

RESUMEN

Mast cells are involved in various immunological responses, although it remains unknown how their terminal differentiation is regulated. We previously established a culture model that mimics the process of mast cell maturation in the cutaneous tissue and found that growth factor independent 1 (Gfi1) was up-regulated whereas its paralogue Gfi1b down-regulated. Here we investigated the roles of Gfi1 and Gfi1b in the process of mast cell maturation using a murine mast cell line, MC9. Gfi1 and Gfi1b cDNAs were stably expressed in MC9 cells using the recombinant lentivirus. Histamine synthesis was significantly induced by stem cell factor (SCF) alone, whereas tryptase expression was significantly augmented in the presence of both SCF and Swiss 3T3 cells. Since exogenously expressed Gfi1 and Gfi1b might affect their expression levels in MC9 cells, we investigated the relationship between the expression profiles of Gfi1/Gfi1b proteins and maturation indices, such as histamine synthesis and tryptase expression. The comparison suggested that histamine synthesis during the co-culture period was positively regulated by Gfi1b while augmented expression of tryptase was abolished by one-sided expression of Gfi1/Gfi1b. Our findings indicated the involvement of Gfi1 and Gfi1b in the process of murine mast cell maturation.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/genética , Histamina/genética , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Activación Transcripcional , Triptasas/genética , Células 3T3 , Animales , Línea Celular , Técnicas de Cocultivo , ADN Complementario , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Histamina/biosíntesis , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Factor de Células Madre/metabolismo , Factores de Transcripción/metabolismo , Triptasas/metabolismo
17.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38305138

RESUMEN

Colistin is a cationic cyclic antimicrobial peptide used as a last resort against multidrug-resistant gram-negative bacteria. To understand the factors involved in colistin susceptibility, we screened colistin-sensitive mutants from an E. coli gene-knockout library (Keio collection). The knockout of purA, whose product catalyzes the synthesis of adenylosuccinate from IMP in the de novo purine synthesis pathway, resulted in increased sensitivity to colistin. Adenylosuccinate is subsequently converted to AMP, which is phosphorylated to produce ADP, a substrate for ATP synthesis. The amount of ATP was lower in the purA-knockout mutant than that in the wild-type strain. ATP synthesis is coupled with proton transfer, and it contributes to the membrane potential. Using the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], we found that the membrane was hyperpolarized in the purA-knockout mutant compared to that in the wild-type strain. Treatment with the proton uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), abolished the hyperpolarization and colistin sensitivity in the mutant. The purA-knockout mutant exhibited increased sensitivity to aminoglycosides, kanamycin, and gentamicin; their uptake requires a membrane potential. Therefore, the knockout of purA, an adenylosuccinate synthase, decreases ATP synthesis concurrently with membrane hyperpolarization, resulting in increased sensitivity to colistin.


Asunto(s)
Adenilosuccinato Sintasa , Escherichia coli , Escherichia coli/genética , Colistina/farmacología , Protones , Antibacterianos/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Adenosina Trifosfato , Pruebas de Sensibilidad Microbiana
18.
PLoS One ; 19(4): e0300634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669243

RESUMEN

The flagellar motor proteins, MotA and MotB, form a complex that rotates the flagella by utilizing the proton motive force (PMF) at the bacterial cell membrane. Although PMF affects the susceptibility to aminoglycosides, the effect of flagellar motor proteins on the susceptibility to aminoglycosides has not been investigated. Here, we found that MotB overexpression increased susceptibility to aminoglycosides, such as kanamycin and gentamicin, in Bacillus subtilis without affecting swimming motility. MotB overexpression did not affect susceptibility to ribosome-targeting antibiotics other than aminoglycosides, cell wall-targeting antibiotics, DNA synthesis-inhibiting antibiotics, or antibiotics inhibiting RNA synthesis. Meanwhile, MotB overexpression increased the susceptibility to aminoglycosides even in the motA-deletion mutant, which lacks swimming motility. Overexpression of the MotB mutant protein carrying an amino acid substitution at the proton-binding site (D24A) resulted in the loss of the enhanced aminoglycoside-sensitive phenotype. These results suggested that MotB overexpression sensitizes B. subtilis to aminoglycosides in a motility-independent manner. Notably, the aminoglycoside-sensitive phenotype induced by MotB requires the proton-binding site but not the MotA/MotB complex formation.


Asunto(s)
Aminoglicósidos , Antibacterianos , Bacillus subtilis , Proteínas Bacterianas , Flagelos , Bacillus subtilis/genética , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Flagelos/metabolismo , Flagelos/efectos de los fármacos , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/genética
20.
Proc Natl Acad Sci U S A ; 107(47): 20465-70, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059907

RESUMEN

The expression and turnover of MHC class II-peptide complexes (pMHC-II) on the surface of dendritic cells (DCs) is essential for their ability to activate CD4 T cells efficiently. The half-life of surface pMHC-II is significantly greater in activated (mature) DCs than in resting (immature) DCs, but the molecular mechanism leading to this difference remains unknown. We now show that ubiquitination of pMHC-II by the E3 ubiquitin ligase membrane-associated RING-CH 1 (March-I) regulates surface expression, intracellular distribution, and survival of pMHC-II in DCs. DCs isolated from March-I-KO mice express very high levels of pMHC-II on the plasma membrane even before DC activation. Although ubiquitination does not affect the kinetics of pMHC-II endocytosis from the surface of DCs, the survival of pMHC-II is enhanced in DCs obtained from March-I-deficient and MHC-II ubiquitination-mutant mice. Using pMHC-II-specific mAb, we show that immature DCs generate large amounts of pMHC-II that are remarkably stable under conditions in which pMHC-II ubiquitination is blocked. Thus, the cellular distribution and stability of surface pMHC-II in DCs is regulated by ubiquitin-dependent degradation of internalized pMHC-II.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Anticuerpos Monoclonales , Células Dendríticas/citología , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA