Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38616653

RESUMEN

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

2.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748012

RESUMEN

The dissociative double ionization of CH3I and CH2I2 irradiated with extreme ultraviolet light at hv = 100 eV is investigated by multi-electron-ion coincidence spectroscopy using a magnetic bottle type electron spectrometer. The spin-orbit state-resolved Auger electron spectra for the I 4d core-hole states, (I 4d3/2)-1 and (I 4d5/2)-1, provide clear identifications of electronic states of CH3I2+ and CH2I22+. The dominant ion species produced after the double ionization correlate with the Auger electron energy, showing that different fragmentation pathways are open depending on the electronic states populated by the Auger decay. Theoretical calculations are performed to understand the fragmentation from the doubly charged states and the observed spin-orbit specificity in the Auger decay.

3.
J Chem Phys ; 160(10)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38469909

RESUMEN

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA