RESUMEN
Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey1-4. However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods5-8 and experimental studies indicate that oscillations may be short-lived without external stabilizing factors9-19. Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events.
Asunto(s)
Chlorophyta/fisiología , Cadena Alimentaria , Modelos Biológicos , Rotíferos/fisiología , Animales , Biota , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/fisiología , Chlorophyta/crecimiento & desarrollo , Rotíferos/crecimiento & desarrolloRESUMEN
Global climate warming is causing the loss of freshwater ice around the Northern Hemisphere. Although the timing and duration of ice covers are known to regulate ecological processes in seasonally ice-covered ecosystems, the consequences of shortening winters for freshwater biota are poorly understood owing to the scarcity of under-ice research. Here, we present one of the first in-lake experiments to postpone ice-cover onset (by ≤21 d), thereby extending light availability (by ≤40 d) in early winter, and explicitly demonstrate cascading effects on pelagic food web processes and phenologies. Delaying ice-on elicited a sequence of events from winter to spring: 1) relatively greater densities of algal resources and primary consumers in early winter; 2) an enhanced prevalence of winter-active (overwintering) consumers throughout the ice-covered period, associated with augmented storage of high-quality fats likely due to a longer access to algal resources in early winter; and 3) an altered trophic structure after ice-off, with greater initial springtime densities of overwintering consumers driving stronger, earlier top-down regulation, effectively reducing the spring algal bloom. Increasingly later ice onset may thus promote consumer overwintering, which can confer a competitive advantage on taxa capable of surviving winters upon ice-off; a process that may diminish spring food availability for other consumers, potentially disrupting trophic linkages and energy flow pathways over the subsequent open-water season. In considering a future with warmer winters, these results provide empirical evidence that may help anticipate phenological responses to freshwater ice loss and, more broadly, constitute a case of climate-induced cross-seasonal cascade on realized food web processes.
Asunto(s)
Cadena Alimentaria , Hielo , Plancton/fisiología , Estaciones del Año , Animales , Biomarcadores , Clima , Cambio Climático , Ecosistema , Eutrofización , Agua Dulce , Cubierta de Hielo , Lagos , Modelos Lineales , Fotosíntesis , Fitoplancton , Quebec , Factores de Tiempo , ZooplanctonRESUMEN
Almost 50 years ago, Michael Rosenzweig pointed out that nutrient addition can destabilise food webs, leading to loss of species and reduced ecosystem function through the paradox of enrichment. Around the same time, David Tilman demonstrated that increased nutrient loading would also be expected to cause competitive exclusion leading to deleterious changes in food web diversity. While both concepts have greatly illuminated general diversity-stability theory, we currently lack a coherent framework to predict how nutrients influence food web stability across a landscape. This is a vitally important gap in our understanding, given mounting evidence of serious ecological disruption arising from anthropogenic displacement of resources and organisms. Here, we combine contemporary theory on food webs and meta-ecosystems to show that nutrient additions are indeed expected to drive loss in stability and function in human-impacted regions. Our models suggest that destabilisation is more likely to be caused by the complete loss of an equilibrium due to edible plant species being competitively excluded. In highly modified landscapes, spatial nutrient transport theory suggests that such instabilities can be amplified over vast distances from the sites of nutrient addition. Consistent with this theoretical synthesis, the empirical frequency of these distant propagating ecosystem imbalances appears to be growing. This synthesis of theory and empirical data suggests that human modification of the Earth is strongly connecting distantly separated ecosystems, causing rapid, expansive and costly nutrient-driven instabilities over vast areas of the planet. Similar to existing food web theory, the corollary to this spatial nutrient theory is that slowing down spatial nutrient pathways can be a potent means of stabilising degraded ecosystems.
Asunto(s)
Ecosistema , Cadena Alimentaria , Humanos , NutrientesRESUMEN
Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.
Asunto(s)
Evolución Biológica , Ambiente , Aclimatación , Adaptación Fisiológica , Dinámica PoblacionalRESUMEN
Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 µg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.
Asunto(s)
Organismos Acuáticos , Agua Dulce , Bacterias/genética , Biodiversidad , ARN Ribosómico 16S/genéticaRESUMEN
Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.
Asunto(s)
Contaminantes Químicos del Agua , Zooplancton , Agroquímicos , Animales , Biomasa , Ecosistema , Agua Dulce , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Asunto(s)
Adaptación Biológica , Evolución Biológica , Fenómenos Ecológicos y Ambientales , Aptitud Genética , Selección GenéticaRESUMEN
Although connectivity can promote host species persistence in a metapopulation, dispersal may also enable disease transmission, an effect further complicated by the impact that parasite distribution may have on host-parasite population dynamics. We investigated the effects of connectivity and initial parasite distribution (clustered or dispersed) on microparasite-host dynamics in experimental metapopulations, using guppies and Gyrodactylus turnbulli We created metapopulations of guppies divided into four subpopulations and introduced either a low level of parasites to all subpopulations (dispersed) or a high level of parasites to one subpopulation (clustered). Controlled migration among subpopulations occurred every 10 days. In additional trials, we introduced low or high levels of parasites to isolated populations. Parasites persisted longer in metapopulations than in isolated populations. Mortality was lowest in isolated populations with low-level introductions. The interaction of connectivity and initial parasite distribution influenced parasite abundance. With low-level introductions, connectivity helped the parasite persist longer but had little effect on the hosts. With high levels, connectivity also benefited the hosts, lowering parasite burdens. These findings have implications for disease management and species conservation.
Asunto(s)
Distribución Animal , Enfermedades de los Peces/parasitología , Interacciones Huésped-Parásitos , Poecilia , Trematodos/fisiología , Infecciones por Trematodos/veterinaria , Animales , Masculino , Infecciones por Trematodos/parasitologíaRESUMEN
Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities.
Asunto(s)
Agua Dulce/microbiología , Lagos/microbiología , Bacterias/clasificación , Reactores Biológicos , Chlorophyta/clasificación , Diatomeas/clasificación , Agua Dulce/química , Concentración de Iones de Hidrógeno , Quebec , SalinidadRESUMEN
Nutrients can limit the productivity of ecosystems and control the composition of the communities of organisms that inhabit them. Humans are causing atmospheric CO2 concentrations to reach levels higher than those of the past millions of years while at the same time propagating eutrophication through the addition of nutrients to lakes and rivers. We studied the effect of elevated CO2 concentrations, nutrient addition and their interaction in a series of freshwater mesocosm experiments using a factorial design. Our results highlight the important role of CO2 in shaping phytoplankton communities and their response to nutrient addition. We found that CO2 greatly magnified the increase in phytoplankton growth caused by the increased availability of nutrients. Elevated CO2 also caused changes in phytoplankton community composition. As predicted from physiology and laboratory experiments, the taxonomic group that was most limited by current day CO2 concentrations, chlorophytes, increased in relative frequency at elevated CO2. This predictable change in community composition with changes in CO2 is not altered by changes in the availability of other nutrients.
Asunto(s)
Dióxido de Carbono , Ecosistema , Eutrofización , Agua Dulce/química , Lagos , Fitoplancton/crecimiento & desarrollo , Ríos , Dióxido de Carbono/química , Chlorophyta/crecimiento & desarrolloRESUMEN
Parasites are detrimental to host fitness and therefore should strongly select for host defence mechanisms. Yet, hosts vary considerably in their observed parasite loads. One notable source of inter-individual variation in parasitism is host sex. Such variation could be caused by the immunomodulatory effects of gonadal steroids. Here we assess the influence of gonadal steroids on the ability of guppies (Poecilia reticulata) to defend themselves against a common and deleterious parasite (Gyrodactylus turnbulli). Adult male guppies underwent 31 days of artificial demasculinization with the androgen receptor-antagonist flutamide, or feminization with a combination of flutamide and the synthetic oestrogen 17 ß-estradiol, and their parasite loads were compared over time to untreated males and females. Both demasculinized and feminized male guppies had lower G. turnbulli loads than the untreated males and females, but this effect appeared to be mainly the result of demasculinization, with feminization having no additional measurable effect. Furthermore, demasculinized males, feminized males and untreated females all suffered lower Gyrodactylus-induced mortality than untreated males. Together, these results suggest that androgens reduce the ability of guppies to control parasite loads, and modulate resistance to and survival from infection. We discuss the relevance of these findings for understanding constraints on the evolution of resistance in guppies and other vertebrates.
Asunto(s)
Enfermedades de los Peces/parasitología , Platelmintos/inmunología , Poecilia/parasitología , Infecciones por Trematodos/veterinaria , Antagonistas de Andrógenos/administración & dosificación , Antagonistas de Andrógenos/farmacología , Animales , Resistencia a la Enfermedad/fisiología , Quimioterapia Combinada , Estradiol/farmacología , Femenino , Enfermedades de los Peces/inmunología , Flutamida/administración & dosificación , Flutamida/farmacología , Masculino , Carga de Parásitos/veterinaria , Distribución Aleatoria , Factores Sexuales , Infecciones por Trematodos/inmunología , Infecciones por Trematodos/parasitologíaRESUMEN
Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature.
Asunto(s)
Biodiversidad , Cambio Climático , Fitoplancton/fisiología , Temperatura , Biomasa , Ecosistema , Dinámica PoblacionalRESUMEN
A reduction in the strength of selection is expected to cause the evolution of reduced trait expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that parasite. To test this prediction in nature, we studied the fourth- and eighth-generation descendants of guppies (Poecilia reticulata) introduced into four natural streams following experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two generations of laboratory rearing to control for plasticity and maternal effects, we infected individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the introduced guppy populations had rapidly and repeatably evolved increased resistance to the now-absent parasite. This evolution was not owing to a resistance-tolerance trade-off, nor to differences in productivity among the sites. Instead, a leading candidate hypothesis is that the rapid life-history evolution typical in such introductions pleiotropically increases parasite resistance. Our study adds a new dimension to the growing evidence for contemporary evolution in the wild, and also points to the need for a re-consideration of simple expectations from host-parasite theory. In particular, our results highlight the need for increased consideration of multiple sources of selection and pleiotropy when studying evolution in natural contexts.
Asunto(s)
Resistencia a la Enfermedad , Interacciones Huésped-Parásitos , Platelmintos/fisiología , Poecilia/parasitología , Selección Genética , Animales , CruzamientoRESUMEN
The concentration of CO(2) in the atmosphere is expected to double by the end of the century. Experiments have shown that this will have important effects on the physiology and ecology of photosynthetic organisms, but it is still unclear if elevated CO(2) will elicit an evolutionary response in primary producers that causes changes in physiological and ecological attributes. In this study, we cultured lines of seven species of freshwater phytoplankton from three major groups at current (approx. 380 ppm CO(2)) and predicted future conditions (1000 ppm CO(2)) for over 750 generations. We grew the phytoplankton under three culture regimes: nutrient-replete liquid medium, nutrient-poor liquid medium and solid agar medium. We then performed reciprocal transplant assays to test for specific adaptation to elevated CO(2) in these lines. We found no evidence for evolutionary change. We conclude that the physiology of carbon utilization may be conserved in natural freshwater phytoplankton communities experiencing rising atmospheric CO(2) levels, without substantial evolutionary change.
Asunto(s)
Adaptación Fisiológica/fisiología , Dióxido de Carbono/administración & dosificación , Fitoplancton/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Agua Dulce , Fotosíntesis , Fitoplancton/genética , Fitoplancton/metabolismo , Selección GenéticaRESUMEN
A number of mechanisms have been proposed to explain the coexistence of species engaging in exploitative competition. The Armstrong-McGehee mechanism relies on different levels of nonlinearity in functional response between competing consumers and their ability to avoid competitive exclusion through temporal resource partitioning during endogenously generated fluctuations. While previous studies have mainly focused on cases where one consumer has nonlinear functional response and the other consumer has linear functional response, our study assessed coexistence and competitive exclusion under a more realistic scenario with two nonlinear consumers. Using analytical and numerical methods we found that the potential of coexistence of the two consumers decreases with increasing nonlinearity in the more linear species; increasing nonlinearity in the more nonlinear species, however, resulted in non-monotonic changes in the parameter space allowing coexistence. When coexistence potential is quantified under the presupposition that each consumer must be able to persist with the resource by itself, coexistence becomes consistently less likely with increasing similarity of the functional responses of the two consumers. Our results suggest that the Armstrong-McGehee mechanism is unlikely to operate as the sole coexistence-promoting mechanism in communities with generally nonlinear consumer-resource interactions. However, its role as a module in more complex systems and in synergy with other factors remains to be established.
Asunto(s)
Conducta Competitiva/fisiología , Modelos Biológicos , Animales , Ecosistema , Dinámicas no Lineales , Densidad de Población , Dinámica Poblacional , Conducta Espacial/fisiología , Especificidad de la EspecieRESUMEN
Studies of phenotypic variation in nature often consider only a single potential selective agent. In such cases, it remains an open question as to whether variation attributed to that single measured agent might be influenced by some other unmeasured agent. Previous research has shown that phenotypic variation in the Trinidadian guppy (Poecilia reticulata) is strongly influenced by predation regime, and we here ask whether parasitism might represent an additional important selective agent shaping this variation. We performed a field survey of 26 natural guppy populations of known predation regime in northern Trinidad. We quantified levels of parasitism of guppies by the monogenean ecotoparasite, Gyrodactylus, and examined whether this parasite was associated with guppy body size or male colour. Spatial variation in Gyrodactylus parasitism was consistent between years, and parasite prevalence was generally, but not always, higher at high-predation sites than at low-predation sites. Consistent with previous work, predation regime was related to guppy size and some aspects of male colour, whereas parasitism showed few and only minor associations with the same traits. Moreover, a consideration of parasitism did not alter any interpretations regarding associations between guppy traits and predation regimes. These results suggest that parasitism, at least as quantified in the present study, does not play a major role in shaping variation in guppy body size or colour. Nevertheless, considerable variation in these traits, even within a predation regime, suggests the likely importance of other selective agents beyond just predation regime.
Asunto(s)
Platelmintos/fisiología , Poecilia/parasitología , Conducta Predatoria , Animales , Tamaño Corporal , Masculino , Preferencia en el Apareamiento Animal , Análisis Multivariante , Fenotipo , Poecilia/anatomía & histología , Poecilia/fisiología , Selección GenéticaRESUMEN
Complex dynamics, such as population cycles, can arise when the individual members of a population become synchronized. However, it is an open question how readily and through which mechanisms synchronization-driven cycles can occur in unstructured microbial populations. In experimental chemostats we studied large populations (>10(9) cells) of unicellular phytoplankton that displayed regular, inducible and reproducible population oscillations. Measurements of cell size distributions revealed that progression through the mitotic cycle was synchronized with the population cycles. A mathematical model that accounts for both the cell cycle and population-level processes suggests that cycles occur because individual cells become synchronized by interacting with one another through their common nutrient pool. An external perturbation by direct manipulation of the nutrient availability resulted in phase resetting, unmasking intrinsic oscillations and producing a transient collective cycle as the individuals gradually drift apart. Our study indicates a strong connection between complex within-cell processes and population dynamics, where synchronized cell cycles of unicellular phytoplankton provide sufficient population structure to cause small-amplitude oscillations at the population level.
Asunto(s)
Ciclo Celular , Fitoplancton/citologíaRESUMEN
Natural populations often face multiple mortality sources. Adaptive responses to one mortality source might also be beneficial with respect to other sources of mortality, resulting in "reinforcing adaptations"; or they might be detrimental with respect to other sources of mortality, resulting in "conflicting adaptations". We explored these possibilities by testing experimentally if the responses of guppies (Poecilia reticulata) to the monogenean ectoparasitic worm Gyrodactylus differed between populations adapted to different predation regimes. In experimental stream channels designed to replicate the natural environment, we exposed eight guppy populations (high-predation and low-predation populations from each of four separate rivers) either to their local Gyrodactylus parasites (infection treatment) or to the absence of those parasites (control). We found that infection dynamics varied dramatically among populations in a repeatable fashion, but that this variation was not related to the predation regime of origin. Consistent with previous work, high-predation guppy females gained more mass, had lower reproductive investment, and had more but smaller embryos than did low-predation females. Relative to control (no parasite) channels, guppies from treatment (infected) channels gained less mass but produced similar numbers and sizes of embryos-and thus had a higher reproductive effort. However, no interaction was evident between infection treatment and predation regime. We conclude that parasitism by Gyrodactylus and predation are both likely selective forces for guppies, but that adaptation to predation does not have an obvious deterministic effect on host-parasite dynamics or on life-history traits of female guppies.
Asunto(s)
Cadena Alimentaria , Interacciones Huésped-Parásitos , Poecilia/parasitología , Adaptación Fisiológica , Animales , Tamaño Corporal , Femenino , Masculino , Platelmintos/parasitología , Dinámica Poblacional , ReproducciónRESUMEN
Although the use and development of molecular biomonitoring tools based on environmental nucleic acids (eDNA and eRNA; collectively known as eNAs) have gained broad interest for the quantification of biodiversity in natural ecosystems, studies investigating the impact of site-specific physicochemical parameters on eNA-based detection methods (particularly eRNA) remain scarce. Here, we used a controlled laboratory microcosm experiment to comparatively assess the environmental degradation of eDNA and eRNA across an acid-base gradient following complete removal of the progenitor organism (Daphnia pulex). Using water samples collected over a 30-day period, eDNA and eRNA copy numbers were quantified using a droplet digital PCR (ddPCR) assay targeting the mitochondrial cytochrome c oxidase subunit I (COI) gene of D. pulex. We found that eRNA decayed more rapidly than eDNA at all pH conditions tested, with detectability-predicted by an exponential decay model-for up to 57 h (eRNA; neutral pH) and 143 days (eDNA; acidic pH) post organismal removal. Decay rates for eDNA were significantly higher in neutral and alkaline conditions than in acidic conditions, while decay rates for eRNA did not differ significantly among pH levels. Collectively, our findings provide the basis for a predictive framework assessing the persistence and degradation dynamics of eRNA and eDNA across a range of ecologically relevant pH conditions, establish the potential for eRNA to be used in spatially and temporally sensitive biomonitoring studies (as it is detectable across a range of pH levels), and may be used to inform future sampling strategies in aquatic habitats.
Asunto(s)
ADN Ambiental , ADN/análisis , ADN/genética , Ecosistema , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno , ARNRESUMEN
Agrochemicals often contaminate freshwater bodies, affecting microbial communities that underlie aquatic food webs. For example, the herbicide glyphosate has the potential to indirectly select for antibiotic-resistant bacteria. Such cross-selection could occur if the same genes (encoding efflux pumps, for example) confer resistance to both glyphosate and antibiotics. To test for cross-resistance in natural aquatic bacterial communities, we added a glyphosate-based herbicide (GBH) to 1,000-liter mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes in bacterial communities with shotgun metagenomic sequencing and annotated metagenome-assembled genomes (MAGs) for the presence of known antibiotic resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that high doses of GBH significantly increased ARG frequency and selected for multidrug efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH was predictable based on the number of ARGs in their genomes (17% of variation explained) and, to a lesser extent, by resistance mutations in EPSPS. Together, these results indicate that GBHs can cross-select for antibiotic resistance in natural freshwater bacteria. IMPORTANCE Glyphosate-based herbicides (GBHs) such as Roundup formulations may have the unintended consequence of selecting for antibiotic resistance genes (ARGs), as demonstrated in previous experiments. However, the effects of GBHs on ARGs remain unknown in natural aquatic communities, which are often contaminated with pesticides from agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here, we performed a freshwater mesocosm experiment showing that a GBH strongly selects for ARGs, particularly multidrug efflux pumps. These selective effects were evident after just a few days, and the ability of bacteria to survive and thrive after GBH stress was predictable by the number of ARGs in their genomes and, to a lesser extent, by mutations in EPSPS. Intensive GBH application may therefore have the unintended consequence of selecting for ARGs in natural freshwater communities.