Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biol Chem ; 295(25): 8589-8595, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32381505

RESUMEN

Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, trans-synaptic protein-protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry, and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate neuroligin (Nlgn) genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that Nlgn1 and Nlgn3 are the major murine Nlgn genes and that the expression levels of the Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of Nlgn genes on the E-I balance in the murine hippocampus.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Potenciales Postsinápticos Excitadores , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN
2.
Proc Natl Acad Sci U S A ; 115(36): 9002-9007, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127003

RESUMEN

Alzheimer's disease (AD) is characterized by the progressive destruction and dysfunction of central neurons. AD patients commonly have unprovoked seizures compared with age-matched controls. Amyloid peptide-related inflammation is thought to be an important aspect of AD pathogenesis. We previously reported that NLRP3 inflammasome KO mice, when bred into APPswe/PS1ΔE9 (APP/PS1) mice, are completely protected from amyloid-induced AD-like disease, presumably because they cannot produce mature IL1ß or IL18. To test the role of IL18, we bred IL18KO mice with APP/PS1 mice. Surprisingly, IL18KO/APP/PS1 mice developed a lethal seizure disorder that was completely reversed by the anticonvulsant levetiracetam. IL18-deficient AD mice showed a lower threshold in chemically induced seizures and a selective increase in gene expression related to increased neuronal activity. IL18-deficient AD mice exhibited increased excitatory synaptic proteins, spine density, and basal excitatory synaptic transmission that contributed to seizure activity. This study identifies a role for IL18 in suppressing aberrant neuronal transmission in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Convulsiones/metabolismo , Transmisión Sináptica , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide/genética , Animales , Inflamasomas/genética , Interleucina-18/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Levetiracetam , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piracetam/análogos & derivados , Piracetam/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/patología
3.
Eur J Neurosci ; 41(8): 1025-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25816842

RESUMEN

The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons.


Asunto(s)
Región CA1 Hipocampal/fisiología , Neuronas GABAérgicas/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Piramidales/fisiología , Transmisión Sináptica , Animales , Región CA1 Hipocampal/metabolismo , Proteínas Portadoras/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Potenciales de la Membrana , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural , Parvalbúminas/metabolismo , Densidad Postsináptica/metabolismo , Células Piramidales/metabolismo
4.
J Neurosci ; 33(8): 3612-23, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426688

RESUMEN

Synaptic transmission depends on the matching and alignment of presynaptically released transmitters and postsynaptic neurotransmitter receptors. Neuroligin (NL) and Neurexin (Nrxn) proteins are trans-synaptic adhesion molecules that are important in validation and maturation of specific synapses. NL isoforms NL1 and NL2 have specific functional roles in excitatory and inhibitory synapses, respectively, but the molecular basis behind this distinction is still unclear. We show here that the extracellular domain of NL2 confers its unique ability to enhance inhibitory synaptic function when overexpressed in rat hippocampal pyramidal neurons, whereas NL1 normally only promotes excitatory synapses. This specificity is conferred by presynaptic Nrxn isoforms, as NL1 can also induce functional inhibitory synapse connections when the presynaptic interneurons ectopically express an Nrxn isoform that binds to NL1. Our results indicate that trans-synaptic interaction with differentially expressed presynaptic Nrxns underlies the distinct functions of NL1 and NL2, and is sufficient to induce functional inhibitory synapse formation.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Interneuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/fisiología , Receptores de Superficie Celular/metabolismo , Sinapsis/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/fisiología , Células Cultivadas , Femenino , Células HEK293 , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Interneuronas/fisiología , Masculino , Proteínas del Tejido Nervioso/fisiología , Técnicas de Cultivo de Órganos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Unión Proteica/fisiología , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Células Piramidales/fisiología , Ratas , Receptores de Superficie Celular/fisiología , Sinapsis/metabolismo
5.
J Neurosci ; 33(29): 11839-51, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23864674

RESUMEN

Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression, including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here, we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus, and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark, histone H3 trimethylated at lysine 4, and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia, GAD1-TSS(-50kbLoop) was decreased compared with controls, in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop), the murine homolog to GAD1-TSS(-50kbLoop), is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture, Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures, including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression, are conserved between the rodent and primate brain, and subject to developmental and activity-dependent regulation, and disordered in some cases with schizophrenia. More broadly, the findings presented here draw a connection between noncoding DNA, spatial genome architecture, and neuronal plasticity in development and disease.


Asunto(s)
Glutamato Descarboxilasa/genética , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Animales , Antipsicóticos/farmacología , Células Cultivadas , Cromosomas Humanos Par 2 , Clozapina/farmacología , Metilación de ADN , Regulación hacia Abajo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glutamato Descarboxilasa/metabolismo , Haloperidol/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Esquizofrenia/metabolismo
6.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617205

RESUMEN

Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.

7.
PLoS Biol ; 8(1): e1000283, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20098723

RESUMEN

The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking.


Asunto(s)
Dendritas/metabolismo , Endosomas/metabolismo , Proteínas de Unión al GTP rab4/metabolismo , Animales , Transporte Biológico , Células COS , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Chlorocebus aethiops , Dendritas/ultraestructura , Escherichia coli/genética , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiología , Ratones , Plasticidad Neuronal , Proteínas Qa-SNARE/metabolismo , Ratas , Receptores de Glutamato/metabolismo , Porcinos , Proteínas de Unión al GTP rab4/análisis , Proteínas de Unión al GTP rab4/fisiología
8.
Adv Neurobiol ; 33: 333-356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37615873

RESUMEN

The synapse is a highly specialized asymmetric structure that transmits and stores information in the brain. The size of pre- and postsynaptic structures and function is well coordinated at the individual synapse level. For example, large postsynaptic dendritic spines have a larger postsynaptic density with higher α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) number on their surface, while juxtaposing presynaptic terminals have a larger active zone and higher release probability. This indicates that pre- and postsynaptic domains bidirectionally communicate to coordinate assembly of specific molecules on both sides of the synaptic cleft. Cell adhesion molecules (CAMs) that localize at synapses form transsynaptic protein interactions across the synaptic cleft and play important roles in synapse formation and regulation. The extracellular domain of CAMs is essential for specific synapse formation and function. In contrast, the intracellular domain is necessary for binding with synaptic molecules and signal transduction. Therefore, CAMs play an essential role on synapse function and structure. In fact, ample evidence indicates that transsynaptic CAMs instruct and modulate functions at presynaptic sites. This chapter focuses on transsynaptic protein interactions that regulate presynaptic functions emphasizing the role of neuronal CAMs and the intracellular mechanism of their regulation.


Asunto(s)
Encéfalo , Moléculas de Adhesión Celular , Humanos , Transducción de Señal , Sinapsis
9.
Elife ; 122023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695811

RESUMEN

Extensive serotonin (5-hydroxytryptamine, 5-HT) innervation throughout the brain corroborates 5-HT's modulatory role in numerous cognitive activities. Volume transmission is the major mode for 5-HT transmission but mechanisms underlying 5-HT signaling are still largely unknown. Abnormal brain 5-HT levels and function have been implicated in autism spectrum disorder (ASD). Neurexin (Nrxn) genes encode presynaptic cell adhesion molecules important for the regulation of synaptic neurotransmitter release, notably glutamatergic and GABAergic transmission. Mutations in Nrxn genes are associated with neurodevelopmental disorders including ASD. However, the role of Nrxn genes in the 5-HT system is poorly understood. Here, we generated a mouse model with all three Nrxn genes disrupted specifically in 5-HT neurons to study how Nrxns affect 5-HT transmission. Loss of Nrxns in 5-HT neurons reduced the number of serotonin neurons in the early postnatal stage, impaired 5-HT release, and decreased 5-HT release sites and serotonin transporter expression. Furthermore, 5-HT neuron-specific Nrxn knockout reduced sociability and increased depressive-like behavior. Our results highlight functional roles for Nrxns in 5-HT neurotransmission, 5-HT neuron survival, and the execution of complex behaviors.


Asunto(s)
Trastorno del Espectro Autista , Serotonina , Ratones , Animales , Serotonina/metabolismo , Neuronas Serotoninérgicas , Trastorno del Espectro Autista/metabolismo , Transmisión Sináptica/fisiología , Encéfalo/metabolismo
10.
Adv Exp Med Biol ; 970: 335-54, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22351063

RESUMEN

The efficiency of synaptic transmission undergoes plastic modification in response to changes in input activity. This phenomenon is most commonly referred to as synaptic plasticity and can involve different cellular mechanisms over time. In the short term, typically in the order of minutes to 1 h, synaptic plasticity is mediated by the actions of locally existing proteins. In the longer term, the synthesis of new proteins from existing or newly synthesized mRNAs is required to maintain the changes in synaptic transmission. Many studies have attempted to identify genes induced by neuronal activity and to elucidate the functions of the encoded proteins. In this chapter, we describe our current understanding of how activity can regulate the synthesis of new proteins, how the distribution of the newly synthesized protein is regulated in relation to the synapses undergoing plasticity and the function of these proteins in both Hebbian and homeostatic synaptic plasticity.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , ARN Mensajero/genética , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Homeostasis , Proteínas de Andamiaje Homer , Humanos , Memoria/fisiología , Imagen Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , ARN Mensajero/metabolismo , Coloración y Etiquetado , Factores de Tiempo , Transcripción Genética
11.
Neuron ; 56(3): 488-502, 2007 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17988632

RESUMEN

The scaffold protein PSD-95 promotes the maturation and strengthening of excitatory synapses, functions that require proper localization of PSD-95 in the postsynaptic density (PSD). Here we report that phosphorylation of ser-295 enhances the synaptic accumulation of PSD-95 and the ability of PSD-95 to recruit surface AMPA receptors and potentiate excitatory postsynaptic currents. We present evidence that a Rac1-JNK1 signaling pathway mediates ser-295 phosphorylation and regulates synaptic content of PSD-95. Ser-295 phosphorylation is suppressed by chronic elevation, and increased by chronic silencing, of synaptic activity. Rapid dephosphorylation of ser-295 occurs in response to NMDA treatment that causes chemical long-term depression (LTD). Overexpression of a phosphomimicking mutant (S295D) of PSD-95 inhibited NMDA-induced AMPA receptor internalization and blocked the induction of LTD. The data suggest that synaptic strength can be regulated by phosphorylation-dephosphorylation of ser-295 of PSD-95 and that synaptic depression requires the dephosphorylation of ser-295.


Asunto(s)
Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Serina/metabolismo , Membranas Sinápticas/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación/fisiología , N-Metilaspartato/farmacología , Técnicas de Cultivo de Órganos , Fosforilación/efectos de los fármacos , Ratas , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo
12.
Nat Neurosci ; 10(2): 186-95, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17237775

RESUMEN

The structure and function of presynaptic and postsynaptic components of the synapse are highly coordinated. How such coordination is achieved and the molecules involved in this process have not been clarified. Several lines of evidence suggest that presynaptic functionalities are regulated by retrograde mechanisms from the postsynaptic side. We therefore sought postsynaptic mechanisms responsible for trans-synaptic regulation of presynaptic function at excitatory synapses in rat hippocampal CA1 pyramidal neurons. We show here that the postsynaptic complex of scaffolding protein PSD-95 and neuroligin can modulate the release probability of transmitter vesicles at synapse in a retrograde way, resulting in altered presynaptic short-term plasticity. Presynaptic beta-neurexin serves as a likely presynaptic mediator of this effect. Our results indicate that trans-synaptic protein-protein interactions can link postsynaptic and presynaptic function.


Asunto(s)
Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Plasticidad Neuronal/fisiología , Neurotransmisores/metabolismo , Técnicas de Cultivo de Órganos , Terminales Presinápticos/ultraestructura , Probabilidad , Transporte de Proteínas/fisiología , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Ratas , Transducción de Señal/fisiología , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura
13.
Front Mol Neurosci ; 14: 749164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690695

RESUMEN

Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.

14.
Cell Rep ; 32(3): 107921, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697982

RESUMEN

The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT.


Asunto(s)
Corteza Cerebral/metabolismo , Claudinas/metabolismo , Subunidades de Proteína/metabolismo , Convulsiones/metabolismo , Sinapsis/inmunología , Tálamo/metabolismo , Animales , Susceptibilidad a Enfermedades , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo
15.
J Vis Exp ; (164)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33104060

RESUMEN

Electroporation has established itself as a critical method for transferring specific genes into cells to understand their function. Here, we describe a single-cell electroporation technique that maximizes the efficiency (~80%) of in vitro gene transfection in excitatory and class-specific inhibitory neurons in mouse organotypic hippocampal slice culture. Using large glass electrodes, tetrodotoxin-containing artificial cerebrospinal fluid and mild electrical pulses, we delivered a gene of interest into cultured hippocampal CA1 pyramidal neurons and inhibitory interneurons. Moreover, electroporation could be carried out in cultured hippocampal slices up to 21 days in vitro with no reduction in transfection efficiency, allowing for the study of varying slice culture developmental stages. With interest growing in examining the molecular functions of genes across a diverse range of cell types, our method demonstrates a reliable and straightforward approach to in vitro gene transfection in mouse brain tissue that can be performed with existing electrophysiology equipment and techniques.


Asunto(s)
Electroporación/métodos , Hipocampo/citología , Inhibición Neural/fisiología , Neuronas/fisiología , Análisis de la Célula Individual , Técnicas de Cultivo de Tejidos , Animales , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Células Piramidales/fisiología , Fijación del Tejido , Transfección
16.
J Neurosci Methods ; 337: 108632, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126275

RESUMEN

BACKGROUND: Exogenous gene introduction by transfection is one of the most important approaches for understanding the function of specific genes at the cellular level. Electroporation has a long-standing history as a versatile gene delivery technique in vitro and in vivo. However, it has been underutilized in vitro because of technical difficulty and insufficient transfection efficiency. NEW METHOD: We have developed an electroporation technique that combines the use of large glass electrodes, tetrodotoxin-containing artificial cerebrospinal fluid and mild electrical pulses. Here, we describe the technique and compare it with existing methods. RESULTS: Our method achieves a high transfection efficiency (∼80 %) in both excitatory and inhibitory neurons with no detectable side effects on their function. We demonstrate this method is capable of transferring at least three different genes into a single neuron. In addition, we demonstrate the ability to transfect different genes into neighboring cells. COMPARISON WITH EXISTING METHODS: The majority of existing methods use fine-tipped glass electrodes (i.e. > 10 MΩ) and apply high voltage (10 V) pulses with high frequency (100 Hz) for 1 s. These parameters contribute to practical difficulties thus lowering the transfection efficiency. Our unique method minimizes electrode clogging and therefore procedure duration, increasing transfection efficiency and cellular viability. CONCLUSIONS: Our modifications, relative to current methods, optimize electroporation efficiency and cell survival. Our approach offers distinct research strategies not only in elucidating cell-autonomous functions of genes but also for assessing genes contributing to intercellular functions, such as trans-synaptic interactions.


Asunto(s)
Electroporación , Proyectos de Investigación , Animales , Hipocampo , Ratones , Neuronas , Transfección
17.
Elife ; 92020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33355091

RESUMEN

Synapse formation and regulation require signaling interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn signaling generates distinct functional properties at synapses.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Neuronas GABAérgicas/fisiología , Hipocampo/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Animales , Región CA1 Hipocampal/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Sinapsis/fisiología
18.
J Neurosci ; 28(33): 8178-88, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18701680

RESUMEN

Within the Ras superfamily of GTPases, Rap1 and Rap2 are the closest homologs to Ras. In non-neural cells, Rap signaling can antagonize Ras signaling. In neurons, Rap also seems to oppose Ras in terms of synaptic function. Whereas Ras is critical for long-term potentiation (LTP), Rap1 has been shown to be required for long-term depression (LTD), and Rap2 has been implicated in depotentiation. Moreover, active Rap1 and Rap2 cause loss of surface AMPA receptors and reduced miniature EPSC amplitude and frequency in cultured neurons. The role of Rap signaling in vivo, however, remains poorly understood. To study the function of Rap2 in the brain and in behavior, we created transgenic mice expressing either constitutively active (Rap2V12) or dominant-negative (Rap2N17) mutants of Rap2 in postnatal forebrain. Multiple lines of Rap2N17 mice showed only weak expression of the transgenic protein, and no phenotype was observed. Rap2V12 mice displayed fewer and shorter dendritic spines in CA1 hippocampal neurons, and enhanced LTD at CA3-CA1 synapses. Behaviorally, Rap2V12 mice showed impaired spatial learning and defective extinction of contextual fear, which correlated with reduced basal phosphorylation of extracellular signal-regulated kinase (ERK) and blunted activation of ERK during fear extinction training. Our data support the idea that Rap2 opposes Ras-ERK signaling in the brain, thereby inhibiting dendritic spine development/maintenance, promoting synaptic depression rather than LTP, and impairing learning. The findings also implicate Rap2 signaling in fear extinction mechanisms, which are thought to be aberrant in anxiety disorders and posttraumatic stress disorder.


Asunto(s)
Espinas Dendríticas/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Miedo/fisiología , Depresión Sináptica a Largo Plazo/genética , Sistema de Señalización de MAP Quinasas , Aprendizaje por Laberinto/fisiología , Proteínas de Unión al GTP rap/genética , Animales , Espinas Dendríticas/patología , Extinción Psicológica/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Miedo/psicología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Conducta Espacial/fisiología , Transmisión Sináptica/genética , Proteínas de Unión al GTP rap/fisiología
19.
J Neurosci ; 28(7): 1697-708, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18272690

RESUMEN

Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders.


Asunto(s)
Espinas Dendríticas/ultraestructura , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Cognición/fisiología , Espinas Dendríticas/fisiología , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso , Plasticidad Neuronal/genética , Neuronas/metabolismo , Técnicas de Placa-Clamp
20.
Mol Cell Neurosci ; 39(4): 499-507, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18602475

RESUMEN

delta-catenin is a protein that binds to the classical cadherins and to synaptic scaffolding proteins in a manner which allows the protein to serve as a link between the adherens junction and the postsynaptic complex. Here we show the regulatory role of delta-catenin on synaptic transmission. delta-catenin increased the AMPA receptor-mediated EPSC, but had no significant effect on the NMDA receptor-mediated EPSC. The effect of delta-catenin on the AMPAR EPSC was mediated by its PDZ ligand. delta-catenin regulates the surface expression of GluR2 in the dendritic spines of neurons. Immunoprecipitation revealed that delta-catenin bound to GRIP-1. In COS7 cells, co-transfection of delta-catenin, GRIP and GluR2 showed that delta-catenin regulates the membrane localization of GRIP through its PDZ ligand and increased the surface expression of GluR2. This study directly shows that delta-catenin is essential for the trafficking and positioning GluR2 in the spine and thus further links delta-catenin to neuronal plasticity.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Fosfoproteínas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales , Células COS , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cateninas , Moléculas de Adhesión Celular/genética , Células Cultivadas , Chlorocebus aethiops , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fosfoproteínas/genética , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA