Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(6): 261-277, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31189779

RESUMEN

Vacuolar-type ATPase (V-ATPase), initially identified in yeast and plant vacuoles, pumps protons into the lumen of organelles coupled with ATP hydrolysis. The mammalian counterpart is found ubiquitously in endomembrane organelles and the plasma membrane of specialized cells such as osteoclasts. V-ATPase is also present in unique organelles such as insulin secretory granules, neural synaptic vesicles, and acrosomes of spermatozoa. Consistent with its diverse physiological roles and unique localization, the seven subunits of V-ATPase have 2-4 isoforms that are organelle- or cell-specific. Subunits of the enzyme function in trafficking organelles and vesicles by interacting with small molecule GTPases. During osteoclast differentiation, one of the four isoforms of subunit a, a3, is indispensable for secretory lysosome trafficking to the plasma membrane. Diseases such as osteopetrosis, renal acidosis, and hearing loss are related to V-ATPase isoforms. In addition to its role as an enzyme, V-ATPase has versatile physiological roles in eukaryotic cells.


Asunto(s)
Lisosomas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Osteoclastos/citología
2.
Biochem Biophys Res Commun ; 498(4): 837-841, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29530525

RESUMEN

Porphyromonas gingivalis is a well-known Gram-negative bacterium that causes periodontal disease. The bacterium metabolizes amino acids and peptides to obtain energy. An ion gradient across its plasma membrane is thought to be essential for nutrient import. However, it is unclear whether an ion-pumping ATPase responsible for the gradient is required for bacterial growth. Here, we report the inhibitory effect of protonophores and inhibitors of a proton-pumping ATPase on the growth of P. gingivalis. Among the compounds examined, curcumin and citreoviridin appreciably reduced the bacterial growth. Furthermore, these compounds inhibited the ATPase activity in the bacterial membrane, where the A-type proton-pumping ATPase (A-ATPase) is located. This study suggests that curcumin and citreoviridin inhibit the bacterial growth by inhibiting the A-ATPase in the P. gingivalis membrane.


Asunto(s)
Porphyromonas gingivalis/efectos de los fármacos , ATPasas de Translocación de Protón/antagonistas & inhibidores , Aurovertinas/farmacología , Proteínas Bacterianas , Membrana Celular/enzimología , Curcumina/farmacología , Enfermedades Periodontales/prevención & control , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/crecimiento & desarrollo , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/química
3.
Biochim Biophys Acta ; 1857(2): 129-140, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26589785

RESUMEN

ATP synthases (FoF1) are found ubiquitously in energy-transducing membranes of bacteria, mitochondria, and chloroplasts. These enzymes couple proton transport and ATP synthesis or hydrolysis through subunit rotation, which has been studied mainly by observing single molecules. In this review, we discuss the mechanism of rotational catalysis of ATP synthases, mainly that from Escherichia coli, emphasizing the high-speed and stochastic rotation including variable rates and an inhibited state. Single molecule studies combined with structural information of the bovine mitochondrial enzyme and mutational analysis have been informative as to an understanding of the catalytic site and the interaction between rotor and stator subunits. We discuss the similarity and difference in structure and inhibitory regulation of F1 from bovine and E. coli. Unlike the crystal structure of bovine F1 (α3ß3γ), that of E. coli contains a ε subunit, which is a known inhibitor of bacterial and chloroplast F1 ATPases. The carboxyl terminal domain of E. coli ε (εCTD) interacts with the catalytic and rotor subunits (ß and γ, respectively), and then inhibits rotation. The effects of phytopolyphenols on F1-ATPase are also discussed: one of them, piceatannol, lowered the rotational speed by affecting rotor/stator interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Polifenoles/química , Subunidades de Proteína/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , Animales , Biocatálisis , Dominio Catalítico , Bovinos , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Modelos Moleculares , Polifenoles/farmacología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Subunidades de Proteína/farmacología , ATPasas de Translocación de Protón/metabolismo , Rotación , Especificidad de la Especie , Termodinámica
4.
J Biol Chem ; 289(44): 30822-30831, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25228697

RESUMEN

Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the ß and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.


Asunto(s)
Proteínas de Escherichia coli/química , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Subunidades de Proteína , ATPasas de Translocación de Protón/genética , Eliminación de Secuencia
5.
Biochim Biophys Acta ; 1837(6): 744-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24561225

RESUMEN

Osteoclasts acidify bone resorption lacunae through proton translocation by plasma membrane V-ATPase (vacuolar-type ATPase) which has an a3 isoform, one of the four isoforms of the trans-membrane a subunit (Toyomura et al., J. Biol. Chem., 278, 22023-22030, 2003). d2, a kidney- and epididymis-specific isoform of the d subunit, was also induced in osteoclast-like cells derived from the RAW264.7 line, and formed V-ATPase with a3. The amount of d2 in osteoclasts was 4-fold higher than that of d1, a ubiquitous isoform. These results indicate that V-ATPase with d2/a3 is a major osteoclast proton pump. Essentially the same results were obtained with osteoclasts derived from mouse spleen macrophages. Macrophages from a3-knock-out mice could differentiate into multi-nuclear cells with osteoclast-specific enzymes. In these cells, the d2 isoform was also induced and assembled in V-ATPase with the a1 or a2 isoform. However, they did not absorb calcium phosphate, indicating that V-ATPase with d2/a1 or d2/a2 could not perform the function of that with d2/a3.


Asunto(s)
Isoenzimas/metabolismo , Osteoclastos/metabolismo , Bombas de Protones/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Isoenzimas/genética , Macrófagos/enzimología , Ratones , Ratones Noqueados , Osteoclastos/enzimología , Reacción en Cadena de la Polimerasa , Bazo/citología , Bazo/enzimología , ATPasas de Translocación de Protón Vacuolares/genética
6.
Curr Opin Cell Biol ; 20(4): 415-26, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18511251

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase)-driven proton pumping and organellar acidification is essential for vesicular trafficking along both the exocytotic and endocytotic pathways of eukaryotic cells. Deficient function of V-ATPase and defects of vesicular acidification have been recently recognized as important mechanisms in a variety of human diseases and are emerging as potential therapeutic targets. In the past few years, significant progress has been made in our understanding of function, regulation, and the cell biological role of V-ATPase. Here, we will review these studies with emphasis on novel direct roles of V-ATPase in the regulation of vesicular trafficking events.


Asunto(s)
Vesículas Transportadoras/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos
7.
J Biol Chem ; 288(51): 36236-43, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24196958

RESUMEN

The proton (H(+)) pumping vacuolar-type ATPase (V-ATPase) is a rotary enzyme that plays a pivotal role in forming intracellular acidic compartments in eukaryotic cells. In Saccharomyces cerevisiae, the membrane extrinsic catalytic V1 and the transmembrane proton-pumping Vo complexes have been shown to reversibly dissociate upon removal of glucose from the medium. However, the basis of this disassembly is largely unknown. In the earlier study, we have found that the amino-terminal α-helical domain between Lys-33 and Lys-83 of yeast E subunit (Vma4p) in the peripheral stalk of the V1 complex has a role in glucose-dependent VoV1 assembly. Results of alanine-scanning mutagenesis within the domain revealed that the Vma4p Glu-44 is a key residue in VoV1 disassembly. Biochemical analysis on Vma4p Glu-44 to Ala, Asn, Asp, and Gln substitutions indicated that Glu-44 has a role in V-ATPase catalysis. These results suggest that Glu-44 is one of the key functional residues for subunit interaction in the V-ATPase stalk complex that allows both efficient rotation catalysis and assembly.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Glucosa/metabolismo , Ácido Glutámico/química , Ácido Glutámico/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
8.
Biochem Biophys Res Commun ; 452(4): 940-4, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25230139

RESUMEN

ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277-286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective ß-γ subunit interactions (γMet23 to Lys) or ß conformational changes (ßSer174 to Phe). These results confirm that smooth interaction between each ß subunit and entire γ subunit in F1 is pertinent for rotational catalysis.


Asunto(s)
Curcumina/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Biochem Biophys Res Commun ; 446(4): 889-93, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24631905

RESUMEN

Intra-molecular rotation of FOF1 ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of FOF1 with the ε subunit connected to a globular protein [cytochrome b562 (ε-Cyt) or flavodoxin reductase (ε-FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε-Cyt and ε-FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε-Cyt or ε-FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction.


Asunto(s)
Grupo Citocromo b/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fusión Génica , NADH NADPH Oxidorreductasas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Fusión Artificial Génica , Grupo Citocromo b/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , NADH NADPH Oxidorreductasas/genética , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
10.
J Biol Chem ; 287(27): 22771-80, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22582396

RESUMEN

In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (∼0.2 ms) and 120° rotation steps (∼0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and ß stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the ß/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.


Asunto(s)
Escherichia coli/enzimología , Polifenoles/metabolismo , ATPasas de Translocación de Protón/metabolismo , Estilbenos/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Catálisis , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis/fisiología , Polifenoles/química , Polifenoles/farmacología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Quercetina/metabolismo , Quercetina/farmacología , Estilbenos/farmacología , Temperatura , Termodinámica
11.
Biochim Biophys Acta ; 1817(10): 1711-21, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22459334

RESUMEN

We focus on the rotational catalysis of Escherichia coli F-ATPase (ATP synthase, F(O)F(1)). Using a probe with low viscous drag, we found stochastic fluctuation of the rotation rates, a flat energy pathway, and contribution of an inhibited state to the overall behavior of the enzyme. Mutational analyses revealed the importance of the interactions among ß and γ subunits and the ß subunit catalytic domain. We also discuss the V-ATPase, which has different physiological roles from the F-ATPase, but is structurally and mechanistically similar. We review the rotation, diversity of subunits, and the regulatory mechanism of reversible subunit dissociation/assembly of Saccharomyces cerevisiae and mammalian complexes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Dominio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
12.
Biochem Biophys Res Commun ; 440(4): 611-6, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24113383

RESUMEN

A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.


Asunto(s)
Fusión Celular , Núcleo Celular/ultraestructura , Lipopolisacáridos/inmunología , Poliestirenos/metabolismo , Animales , Inhibidores de la Calcineurina , Línea Celular , Interleucina-10/farmacología , Interleucina-6/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/administración & dosificación , Ratones , Microesferas , Fagocitosis , Fosfatidilinositol 3-Quinasas/administración & dosificación , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores
13.
IUBMB Life ; 65(3): 247-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23441040

RESUMEN

In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas Motoras Moleculares/química , Subunidades de Proteína/química , ATPasas de Translocación de Protón/química , Protones , Adenosina Trifosfato/química , Biocatálisis , Dominio Catalítico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Oro/química , Hidrólisis , Simulación de Dinámica Molecular , Proteínas Motoras Moleculares/metabolismo , Conformación Proteica , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Rotación , Termodinámica
14.
Nat Cell Biol ; 8(2): 124-36, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16415858

RESUMEN

The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factor 6 de Ribosilación del ADP , Cloruro de Amonio/farmacología , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Línea Celular , Dinaminas/genética , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Macrólidos/farmacología , Ratones , Modelos Biológicos , Mutación/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas/fisiología , Albúmina Sérica Bovina/metabolismo , Transfección , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética
15.
Biochem Biophys Res Commun ; 425(2): 144-9, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22820190

RESUMEN

Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca(2+). The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor κB ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 µm) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.


Asunto(s)
Núcleo Celular/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagosomas/inmunología , Animales , Calcio/farmacología , Fusión Celular , Línea Celular , Escherichia coli/inmunología , Lípido A/inmunología , Lípido A/farmacología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Ratones , Microesferas , Fagocitosis/inmunología , Poliestirenos/inmunología , Salmonella/inmunología
16.
J Biol Chem ; 285(53): 42058-67, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20974856

RESUMEN

ATP hydrolysis-dependent rotation of the F(1) sector of the ATP synthase is a successive cycle of catalytic dwells (∼0.2 ms at 24 °C) and 120° rotation steps (∼0.6 ms) when observed under V(max) conditions using a low viscous drag 60-nm bead attached to the γ subunit (Sekiya, M., Nakamoto, R. K., Al-Shawi, M. K., Nakanishi-Matsui, M., and Futai, M. (2009) J. Biol. Chem. 284, 22401-22410). During the normal course of observation, the γ subunit pauses in a stochastic manner to a catalytically inhibited state that averages ∼1 s in duration. The rotation behavior with adenosine 5'-O-(3-thiotriphosphate) as the substrate or at a low ATP concentration (4 µM) indicates that the rotation is inhibited at the catalytic dwell when the bound ATP undergoes reversible hydrolysis/synthesis. The temperature dependence of rotation shows that F(1) requires ∼2-fold higher activation energy for the transition from the active to the inhibited state compared with that for normal steady-state rotation during the active state. Addition of superstoichiometric ε subunit, the inhibitor of F(1)-ATPase, decreases the rotation rate and at the same time increases the duration time of the inhibited state. Arrhenius analysis shows that the ε subunit has little effect on the transition between active and inhibited states. Rather, the ε subunit confers lower activation energy of steady-state rotation. These results suggest that the ε subunit plays a role in guiding the enzyme through the proper and efficient catalytic and transport rotational pathway but does not influence the transition to the inhibited state.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/química , Bioquímica/métodos , Biofisica/métodos , Catálisis , Hidrólisis , Cinética , Magnesio/química , Temperatura , Viscosidad
17.
Biochim Biophys Acta ; 1797(8): 1343-52, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20170625

RESUMEN

Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.


Asunto(s)
ATPasas de Translocación de Protón/fisiología , ATPasas de Translocación de Protón Vacuolares/fisiología , Adenosina Trifosfato/metabolismo , Animales , Catálisis , Humanos , Rotación , Termodinámica
18.
Biochem Biophys Res Commun ; 395(2): 173-7, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20331967

RESUMEN

The ATP synthase beta subunit hinge domain (betaPhe148 approximately betaGly186, P-loop/alpha-helixB/loop/beta-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F(1) with the betaSer174 to Phe mutation in the domain lowered the gamma subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F(1) sector. Stochastic fluctuation and a key domain of the beta subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the betaMet159, betaIle163, and betaAla167 residues of the beta subunit are involved together with the mutant betaPhe174. The network is expected to stabilize the conformation of beta(DP) (nucleotide-bound form of the beta subunit), resulting in increased activation energy for transition to beta(E) (empty beta subunit). The modeling further predicts that replacement of betaMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of betaS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the beta subunit hinge domain is pertinent for the rotational catalysis.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Fenilalanina/metabolismo , Factores de Transcripción/metabolismo , Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/genética , Sustitución de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Fenilalanina/química , Fenilalanina/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Rotación , Factores de Transcripción/química , Factores de Transcripción/genética
19.
Biochim Biophys Acta ; 1777(10): 1370-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18662668

RESUMEN

Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane V(o) and catalytic V(1) sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 degrees C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 degrees C. Corresponding to the reversible defect of the hybrid V-ATPase, the V(o) subunit a epitope was exposed to the corresponding antibody at 37 degrees C, but became inaccessible at 30 degrees C. However, the V(1) sector was still associated with V(o) at 37 degrees C, as shown immunochemically. The control yeast V-ATPase was active at 37 degrees C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V(1) from V(o) in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes.


Asunto(s)
Isoenzimas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Animales , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Isoenzimas/química , Isoenzimas/genética , Masculino , Ratones , Datos de Secuencia Molecular , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Temperatura , Testículo/enzimología , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
20.
Biochim Biophys Acta Bioenerg ; 1860(5): 361-368, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30876890

RESUMEN

The γ subunit located at the center of ATP synthase (FOF1) plays critical roles in catalysis. Escherichia coli mutant with Pro substitution of the γ subunit residue γLeu218, which are located the rotor shaft near the c subunit ring, decreased NADH-driven ATP synthesis activity and ATP hydrolysis-dependent H+ transport of membranes to ~60% and ~40% of the wild type, respectively, without affecting FOF1 assembly. Consistently, the mutant was defective in growth by oxidative phosphorylation, indicating that energy coupling is impaired by the mutation. The ε subunit conformations in the γLeu218Pro mutant enzyme were investigated by cross-linking between cysteine residues introduced into both the ε subunit (εCys118 and εCys134, in the second helix and the hook segment, respectively) and the γ subunit (γCys99 and γCys260, located in the globular domain and the carboxyl-terminal helix, respectively). In the presence of ADP, the two γ260 and ε134 cysteine residues formed a disulfide bond in both the γLeu218Pro mutant and the wild type, indicating that the hook segment of ε subunit penetrates into the α3ß3-ring along with the γ subunits in both enzymes. However, γ260/ε134 cross-linking in the γLeu218Pro mutant decreased significantly in the presence of ATP, whereas this effect was small in the wild type. These results suggested that the γ subunit carboxyl-terminal helix containing γLeu218 is involved in the conformation of the ε subunit hook region during ATP hydrolysis and, therefore, is required for energy coupling in FOF1.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , ATPasas de Translocación de Protón/química , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación Missense , Dominios Proteicos , Estructura Secundaria de Proteína , ATPasas de Translocación de Protón/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA