Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447871

RESUMEN

The world of elite sports has always been characterized by intense competition, where victories are often determined by minimal differences. This means that every little detail in the preparation of top-level athletes is crucial to their performance at the highest level. One of the most significant aspects to monitor is the jumping capacity, as it enables the measurement of performance, progression, and helps prevent injuries. Herein, we present the development of a system capable of measuring the flight time and height reached by the user, reporting the results through a smartphone using an Android ad-hoc application, which handles all the data processing. The system consists of an affordable and portable circuit based on an accelerometer. It communicates with the smartphone via UART using a Bluetooth module, and its battery provides approximately 9 h of autonomy, making it suitable for outdoor operations. To evaluate the system's precision, we conducted performance tests (counter-movement jumps) with seven subjects. The results confirmed the system's potential for monitoring high-level sports training sessions, as the average deviation obtained was only 2.1% (~0.01 s) in the analysis of flight time and 4.6% (~0.01 m) in jump height.


Asunto(s)
Rendimiento Atlético , Deportes , Humanos , Movimiento , Teléfono Inteligente , Fenómenos Biomecánicos
2.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918498

RESUMEN

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from -1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


Asunto(s)
Esquí , Aceleración , Algoritmos , Fenómenos Biomecánicos , Humanos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA