Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(43): 13783-13789, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39412191

RESUMEN

Since the recent discovery of polar topologies, a recurrent question has been how to remotely tune them. Many efforts have focused on the pumping of polar optical phonons from optical methods, but with limited success, as only switching between specific phases has been achieved so far. Additionally, the correlation between optical pulse characteristics and the resulting phase is poorly understood. Here, we propose an alternative approach and demonstrate the deterministic and dynamical tailoring of polar topologies using acoustic phonon excitations. Our second-principles simulations reveal that by pumping specific longitudinal and transverse acoustic phonons, various topological textures can be induced in materials like BaTiO3 or PbTiO3. This method leverages the strong coupling between polarization and strain in these materials, enabling predictable and dynamic control of polar patterns. Our findings open up an alternative possibility for the manipulation of polar textures, suggesting a promising research direction.

2.
Nano Lett ; 24(10): 2972-2979, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416567

RESUMEN

The recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable. Here we show that this instability of the phase is due to electrical coupling between successive layers. We demonstrate that this electrical coupling is indicative of an effective screening length in the dielectric, similar to the conductor-ferroelectric interface. Controlling the electrostatics of the superlattice interfaces, the system can be tuned between a pure topological vortex state and a mixed classical-topological phase. This coupling also enables engineering coherency among the vortices, not only tuning the bulk phase diagram but also enabling the emergence of a 3D lattice of polar textures.

3.
Phys Rev Lett ; 133(6): 066801, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178455

RESUMEN

Nanostructured ferroelectrics display exotic multidomain configurations resulting from the electrostatic and elastic boundary conditions they are subject to. While the ferroelectric domains appear frozen in experimental images, atomistic second-principles studies suggest that they may become spontaneously mobile upon heating, with the polar order melting in a liquidlike fashion. Here, we run molecular dynamics simulations of model systems (PbTiO_{3}/SrTiO_{3} superlattices) to study the unique features of this transformation. Most notably, we find that the multidomain state loses its translational and orientational orders at different temperatures, resembling the behavior of liquid crystals and yielding an intermediate hexaticlike phase. Our simulations reveal the mechanism responsible for the melting and allow us to characterize the stochastic dynamics in the hexaticlike phase: we find evidence that it is thermally activated, with domain reorientation rates that grow from tens of gigahertzs to terahertzs in a narrow temperature window.

4.
Nano Lett ; 23(14): 6602-6609, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37449842

RESUMEN

Nontrivial polarization textures have been demonstrated in ferroelectric/dielectric superlattices, where the electrostatic, elastic, and different gradient energies compete in a delicate balance. When PbTiO3/SrTiO3 superlattices are grown on DyScO3, the coexistence of ferroelectric domains and vortex structure is observed for n = 12-20 unit cells. Here, we report an approach to achieve single-phase vortex structures in superlattices by controlling the epitaxial strain using Sr1.04Al0.12Ga0.35Ta0.50O3 substrates. The domain width follows Kittel's law with the thickness of the ferroelectric PbTiO3 layers. A phase transition from vortex to a disordered phase with temperature is characterized by the correlation length. Resonant soft X-ray diffraction circular dichroism at the titanium L-edge reveals enhanced chirality with the thickness of the ferroelectric layer. These results are supported by second-principles simulations, which demonstrate that the integrated helicity increases with n. The stabilization of chiral single-phase polar vortices in ferroelectric/dielectric superlattices can enable novel optoelectronic devices with enhanced ferroelectric-light interaction.

5.
Phys Rev Lett ; 129(24): 247601, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563236

RESUMEN

An escalating challenge in condensed-matter research is the characterization of emergent order-parameter nanostructures such as ferroelectric and ferromagnetic skyrmions. Their small length scales coupled with complex, three-dimensional polarization or spin structures makes them demanding to trace out fully. Resonant elastic x-ray scattering (REXS) has emerged as a technique to study chirality in spin textures such as skyrmions and domain walls. It has, however, been used to a considerably lesser extent to study analogous features in ferroelectrics. Here, we present a framework for modeling REXS from an arbitrary arrangement of charge quadrupole moments, which can be applied to nanostructures in materials such as ferroelectrics. With this, we demonstrate how extended reciprocal space scans using REXS with circularly polarized x rays can probe the three-dimensional structure and chirality of polar skyrmions. Measurements, bolstered by quantitative scattering calculations, show that polar skyrmions of mixed chirality coexist, and that REXS allows valuation of relative fractions of right- and left-handed skyrmions. Our quantitative analysis of the structure and chirality of polar skyrmions highlights the capability of REXS for establishing complex topological structures toward future application exploits.

6.
Nat Commun ; 14(1): 1355, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907894

RESUMEN

Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of -1) to a two-dimensional, tetratic lattice of merons (with topological charge of -1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8 membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

7.
Adv Mater ; 35(23): e2208367, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36930962

RESUMEN

Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor-based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric-ferroelectric-dielectric trilayers exhibit classical ferroelectric bi-stability together with the existence of low-field metastable polarization states. This behavior is directly tied to the in-plane vortex ordering, and it is shown that it can be used as a new method of non-destructive readout-out of the poled state.

8.
Nat Commun ; 14(1): 4465, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491370

RESUMEN

Chirality or handedness of a material can be used as an order parameter to uncover the emergent electronic properties for quantum information science. Conventionally, chirality is found in naturally occurring biomolecules and magnetic materials. Chirality can be engineered in a topological polar vortex ferroelectric/dielectric system via atomic-scale symmetry-breaking operations. We use four-dimensional scanning transmission electron microscopy (4D-STEM) to map out the topology-driven three-dimensional domain walls, where the handedness of two neighbor topological domains change or remain the same. The nature of the domain walls is governed by the interplay of the local perpendicular (lateral) and parallel (axial) polarization with respect to the tubular vortex structures. Unique symmetry-breaking operations and the finite nature of domain walls result in a triple point formation at the junction of chiral and achiral domain walls. The unconventional nature of the domain walls with triple point pairs may result in unique electrostatic and magnetic properties potentially useful for quantum sensing applications.

9.
Sci Adv ; 8(1): eabj8030, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985953

RESUMEN

Polar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generation­based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of nonchiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field-controllable order parameter.

10.
Nat Commun ; 13(1): 1769, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383159

RESUMEN

Resonant elastic X-ray scattering (REXS) offers a unique tool to investigate solid-state systems providing spatial knowledge from diffraction combined with electronic information through the enhanced absorption process, allowing the probing of magnetic, charge, spin, and orbital degrees of spatial order together with electronic structure. A new promising application of REXS is to elucidate the chiral structure of electrical polarization emergent in a ferroelectric oxide superlattice in which the polarization vectors in the REXS amplitude are implicitly described through an anisotropic tensor corresponding to the quadrupole moment. Here, we present a detailed theoretical framework and analysis to quantitatively analyze the experimental results of Ti L-edge REXS of a polar vortex array formed in a PbTiO3/SrTiO3 superlattice. Based on this theoretical framework, REXS for polar chiral structures can become a useful tool similar to x-ray resonant magnetic scattering (XRMS), enabling a comprehensive study of both electric and magnetic REXS on the chiral structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA