Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 19(15): 2832-2846, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37000605

RESUMEN

Macromolecular crowding typically applies to biomolecular and polymer-based systems in which the individual particles often feature a two-state folded/unfolded or coil-to-globule transition, such as found for proteins and peptides, DNA and RNA, or supramolecular polymers. Here, we employ a mean-field density functional theory (DFT) of a model of soft and bistable responsive colloids (RCs) in which the size of the macromolecule is explicitly resolved as a degree of freedom living in a bimodal 'Landau' energy landscape (exhibiting big and small states), thus directly responding to the crowding environment. Using this RC-DFT we study the effects of self-crowding on the liquid bulk structure and thermodynamics for different energy barriers and softnesses of the bimodal energy landscape, in conditions close to the coil-to-globule transition. We find substantial crowding effects on the internal distributions, a complex polydispersity behavior, and quasi-universal compression curves for increasing (generalized) packing fractions. Moreover, we uncover distinct signatures of bimodal versus unimodal behavior in the particle compression. Finally, the analysis of the pair structure - derived from the test particle route - reveals that the microstructure of the liquid is quite inhomogeneous due to local depletion effects, tuneable by particle softness.

2.
Soft Matter ; 18(4): 905-921, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014647

RESUMEN

We study colloidal (or smectic) membranes composed of chiral rod-like particles through Monte Carlo simulations. These objects are formed due to the presence of Asakura-Oosawa spheres acting as depletants and creating an effective attraction between the rods. The membranes' shape and structure can be influenced by several parameters, e.g. the number of spheres and rods, their length and their interaction. In order to compare simulation results to an elastic theory, we follow two ansatzes, approximating the free elastic energy in different ways. Both of them lead to reasonable results and capture the behaviour of the colloidal membrane system. One approximation, however, is not suited for achiral rods, where twisting occurs due to surface energy rather than elastic energy. We extract the inverse cholesteric pitch and twist penetration depth for chiral rods with this approximation. The other one is used to introduce a complementary method to estimate elastic constants from the shape of colloidal membranes. Besides, we describe the transition from homogeneously twisted membranes to membranes composed of substructures that occur when the chiral interaction exceeds a length-dependent threshold. We believe that our detailed study and discussion of different aspects of this model system are valuable from a fundamental research viewpoint and suitable for material design suggestions.

3.
J Chem Phys ; 155(24): 244902, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34972378

RESUMEN

Packing and crowding are used in biology as mechanisms to (self-)regulate internal molecular or cellular processes based on collective signaling. Here, we study how the transition kinetics of an internal "switch" of responsive macromolecules is modified collectively by their spatial packing. We employ Brownian dynamics simulations of a model of Responsive Colloids, in which an explicit internal degree of freedom-here, the particle size-moving in a bimodal energy landscape self-consistently responds to the density fluctuations of the crowded environment. We demonstrate that populations and transition times for the two-state switching kinetics can be tuned over one order of magnitude by "self-crowding." An exponential scaling law derived from a combination of Kramers' and liquid state perturbation theory is in very good agreement with the simulations.


Asunto(s)
Sustancias Macromoleculares/química , Coloides/química , Cinética , Simulación de Dinámica Molecular
4.
Phys Rev E ; 108(4): L042601, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978612

RESUMEN

The experimental control of synergistic chemomechanical dynamics of catalytically active microgels (microreactors) is a key prerequisite for the design of adaptive and biomimetic materials. Here, we report a minimalistic model of feedback-controlled microreactors based on the coupling between the hysteretic polymer volume phase transition and a volume-controlled permeability for the internal chemical conversion. We categorize regimes of mono- and bistability, excitability, damped oscillations, as well as sustained oscillatory states with tunable amplitude, as indicated by experiments and representable by the FitzHugh-Nagumo dynamics for neurons. We summarize the features of such a "colloidal neuron" in bifurcation diagrams with respect to microgel design parameters, such as permeability and relaxation times, as a guide for experimental synthesis.

5.
Phys Rev E ; 106(6-1): 064611, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671078

RESUMEN

We study the influence of intrinsic noise on the structure and dynamics of responsive colloids (RCs), which actively change their size and mutual interactions. The colloidal size is explicitly resolved in our RC model as an internal degree of freedom (DOF) in addition to the particle translation. A Hertzian pair potential between the RCs leads to repulsion and shrinking of the particles, resulting in an explicit responsiveness of the system to self-crowding. To render the colloids active, their size is internally driven by a dichotomous noise, randomly switching ("breathing") between growing and shrinking states with a predefined rate, as motivated by recent experiments on synthetic active colloids. The polydispersity of this dichotomous active responsive colloid (D-ARC) model can be tuned by the parameters of the noise. Utilizing stochastic computer simulations, we study crowding effects on the spatial distributions, relaxation times, and self-diffusion of dense suspensions of the D-ARCs. We find a substantial influence of the "built-in" intrinsic noise on the system's behavior, in particular, transitions from unimodal to bimodal size distributions for an increasing colloid density as well as intrinsic noise-modified diffusive translational dynamics. We conclude that controlling the noise of internal DOFs of a macromolecule or cell is a powerful tool for active colloidal materials to enable autonomous changes in the system's collective structure and dynamics towards the adaptation of macroscopic properties to external perturbations.


Asunto(s)
Coloides , Ruido , Coloides/química , Suspensiones , Simulación por Computador , Difusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA