Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(1): E95-E104, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27980033

RESUMEN

The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Tejido Parenquimatoso/inmunología , Vesiculovirus/inmunología , Animales , Encéfalo/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Tejido Parenquimatoso/virología , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/virología , Vesiculovirus/crecimiento & desarrollo , Replicación Viral/inmunología
2.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045975

RESUMEN

Amacrine cells (ACs) are the most diverse neuronal cell type in the vertebrate retina. Yet little is known about the contribution of ACs to visual processing and retinal disease. A major challenge in evaluating AC function is genetic accessibility. A classic tool of mouse genetics, Cre-mediated recombination, can provide such access. We have screened existing genetically-modified mouse strains and identified multiple candidates that express Cre-recombinase in subsets of retinal ACs. The Cre-expressing mice were crossed to fluorescent-reporter mice to assay Cre expression. In addition, a Cre-dependent fluorescent reporter plasmid was electroporated into the subretinal space of Cre strains. Herein, we report three mouse lines (Tac1::IRES-cre, Camk2a-cre, and Scx-cre) that express Cre recombinase in sub-populations of ACs. In two of these lines, recombination occurred in multiple AC types and a small number of other retinal cell types, while recombination in the Camk2a-cre line appears specific to a morphologically distinct AC. We anticipate that these characterized mouse lines will be valuable tools to the community of researchers who study retinal biology and disease.


Asunto(s)
Células Amacrinas , Retina , Células Amacrinas/metabolismo , Animales , Integrasas , Ratones , Ratones Transgénicos , Recombinación Genética , Retina/metabolismo
3.
J Bone Miner Res ; 36(5): 1000-1011, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33528844

RESUMEN

Metal implants are commonly used in orthopedic surgery. The mechanical stability and longevity of implants depend on adequate bone deposition along the implant surface. The cellular and molecular mechanisms underlying peri-implant bone formation (ie, osseointegration) are incompletely understood. Herein, our goal was to determine the specific bone marrow stromal cell populations that contribute to bone formation around metal implants. To do this, we utilized a mouse tibial implant model that is clinically representative of human joint replacement procedures. Using a lineage-tracing approach, we found that both Acta2.creERT2 and Tmem100.creERT2 lineage cells are involved in peri-implant bone formation, and Pdgfra- and Ly6a/Sca1-expressing stromal cells (PαS cells) are highly enriched in both lineages. Single-cell RNA-seq analysis indicated that PαS cells are quiescent in uninjured bone tissue; however, they express markers of proliferation and osteogenic differentiation shortly after implantation surgery. Our findings indicate that PαS cells are mobilized to repair bone tissue and participate in implant osseointegration after surgery. Biologic therapies targeting PαS cells might improve osseointegration in patients undergoing orthopedic procedures. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Oseointegración , Osteogénesis , Actinas , Huesos , Humanos , Proteínas de la Membrana , Ratones , Prótesis e Implantes , Tibia
4.
J Bone Miner Res ; 35(10): 1981-1991, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32427356

RESUMEN

Single-cell RNA sequencing (scRNA-Seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-Seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-Seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-Seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-Seq on freshly recovered long bone endocortical cells from mice that received either vehicle or sclerostin-neutralizing antibody for 1 week. We were unable to detect significant changes in bone anabolism-associated transcripts in immature and mature osteoblasts recovered from mice treated with sclerostin-neutralizing antibody; this might be a consequence of being underpowered to detect modest changes in gene expression, because only 7% of the sequenced endocortical cells were osteoblasts and a limited portion of their transcriptomes were sampled. We conclude that scRNA-Seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single-cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required. © 2020 American Society for Bone and Mineral Research.


Asunto(s)
Osteoblastos , Osteocitos , Análisis de Secuencia de ARN , Animales , Perfilación de la Expresión Génica , Ratones , Análisis de la Célula Individual , Transcriptoma
5.
J Comp Neurol ; 523(11): 1639-63, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25688551

RESUMEN

Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods.


Asunto(s)
Técnicas de Transferencia de Gen , Técnicas de Trazados de Vías Neuroanatómicas , Estomatitis Vesicular , Vesiculovirus/genética , Animales , Línea Celular/citología , Línea Celular/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Invertebrados/anatomía & histología , Invertebrados/metabolismo , Neuronas/citología , Neuronas/metabolismo , Virus de la Rabia/genética , Vertebrados/anatomía & histología , Vertebrados/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Vías Visuales/anatomía & histología , Vías Visuales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA