Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296399

RESUMEN

In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction parameters, including temperature (X1: 40-80 °C) and the solvent-to-solid ratio (X2: 10-40 mL/g), were investigated as independent variables. Experimentally obtained values were fitted to a second-order polynomial model, and optimal conditions were determined using multiple regression analysis and analysis of variance. The black rosehip extract (BRE) obtained at optimized PHWE conditions was further encapsulated in biopolymer-coated liposomes and spray dried to enhance its processing and digestive stability. After reconstitution, the fabricated particles had an average size of 247-380 nm and a zeta-potential of 15-45 mV. Moreover, encapsulation provided remarkable protection of the phenolics under in vitro gastrointestinal digestion conditions, resulting in up to a 5.6-fold more phenolics in the bioaccessible fraction, which also had 2.9-8.6-fold higher antioxidant activity compared to the nonencapsulated BRE. In conclusion, PHWE in combination with a biopolymer coating is a potent method for the production of stable and safe edible natural extracts for the delivery of (poly)phenolic compounds in food and dietary supplements.


Asunto(s)
Catequina , Rosa , Polifenoles , Antioxidantes/farmacología , Antioxidantes/análisis , Antocianinas , Liposomas , Agua , Fenoles/análisis , Extractos Vegetales , Solventes/análisis , Glucósidos
2.
Foods ; 12(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36832856

RESUMEN

The fruits of Rosa pimpinellifolia are rich sources of (poly)phenols, however they are underutilized due to the limited information available. The influence of the pressure, temperature, and co-solvent concentration (aqueous ethanol) of the supercritical carbon dioxide extraction (SCO2-aqEtOH) on the extraction yield, total phenolic-, total anthocyanin-, catechin-, cyanidin-3-O-glucoside contents, and total antioxidant activity of black rosehip was investigated simultaneously. The maximum obtained total phenolic and total anthocyanin contents under the optimized extraction conditions (280 bar, 60 °C and 25% ethanol, v/v) were 76.58 ± 4.25 mg gallic acid equivalent and 10.89 ± 1.56 mg cyanidin-3-O-glucoside equivalent per g of the dry fruits, respectively. The optimal extract obtained by SCO2-aqEtOH was compared to two other extraction procedures: ultrasonication using ethanol as solvent (UA-EtOH) and pressurized hot water extraction (PH-H2O). The bioaccessibility and cellular metabolism of the phenolic compounds in the different black rosehip extracts were assessed using an in vitro digestion coupled with a human intestinal Caco-2 cell model. The in vitro digestive stability and cellular uptake of the phenolic compounds had no significant difference among the different extraction methods. The results of this study confirm the efficiency of SCO2-aqEtOH extraction for phenolic compounds and, in particular, for anthocyanins, and could be used to produce new functional food ingredients from black rosehip with high antioxidant power containing both hydrophilic and lipophilic compounds.

3.
Plants (Basel) ; 11(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161362

RESUMEN

Date palm (Phoenix dactylifera L.) trees are largely cultivated across the Algerian oases; they are principal sources of remuneration and the economic basis for residents of these areas. Date palm fruits are rich sources of essential nutrients, vitamins, minerals, and dietary fibers, with many potential health benefits, yet there are few studies on the chemical composition and biological properties of date palm seed oil. In this study, we present an in-depth characterization of the biochemical composition and antioxidant properties of date palm seed oil (DPSO) produced in Algeria. DPSOs of eight Algerian cultivars, Arechti, Degla-Baida, Deglet-Nour, Ghars, Haloua, Itima, Mech-Degla, and Tentbouchet, were investigated to determine their biochemical compositions and antioxidant properties. The results highlight the potential of DPSO as an alternative food and a natural resource, thanks to several important compounds having high antioxidant capacity. In particular, fatty acids and triacylglycerol (TAGs) analyses showed that oleic (42.74-50.19%), lauric (18.40-22.2%), and myristic (8.83-10.17%) were the major fatty acids, while 1-myristoyl 2-oleoyl 3-linoleoyl glycerol, 1-linolenoyl 2-oleoyl 3-linoleoyl glycerol, 1-2-linolenoyl 3-linoleoyl glycerol, and 1-linolenoyl 2-myristoyl 3-linoleoyl glycerol were the major TAGs. Biophenols and tocopherols analyses revealed the presence of important compounds, such as catechin (22.04-24.92 mg/kg), vanillin (10.67-23.98 mg/kg), and α-tocopherol (443.59 mg/kg), at high remarkable levels. Therefore, a comparison with the literature data concerning other seed oils, including olive oil, confirms that DPSO can be considered a high-quality oil, from a biochemical and biological point of view.

4.
Heliyon ; 6(9): e05030, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32995656

RESUMEN

This study offers a suitable and easy proliposome-liposome method that enhances the encapsulation ability of liposome structures on poor water-soluble extracts. Pollen phenolic extract (PPE) was studied to show applicability in the proposed method. The poor water-soluble PPE (0.2%, w/v) was encapsulated by liposomes generated from proliposomes (P-liposomes) that were prepared via high-pressure homogenization technique without using any organic solvents and high temperature. Only a few drops of ethanol were used to dissolve poor water-soluble compounds in PPE during the preparation of P-liposomes. The trace amount of ethanol maintained the improvement of PPE solubility in P-liposome dispersion, hence the in vitro bioaccessibility and bioactivity of PPE incorporated in P-liposomes increased. Thus, higher encapsulation efficiency was found in P-liposomes compared to conventional liposomes (C-liposomes) in which the EE was 75 and 73%, respectively. To increase the physical stability of liposome structures, the surface of both P-liposomes and C-liposomes was covered with chitosan. There were found small changes between P-liposomes and C-liposomes in terms of mean diameter size and zeta potential. On the other hand, the bioactivity of encapsulated PPE showed differences in P-liposomes and C-liposomes. The antioxidant capacity of PPE in P-liposomes enhanced approximately two times in CUPRAC and three times in DPPH assays. Also, in vitro bioaccessibility of PPE in P-liposomes increased approximately 4 and 2 folds, respectively, regarding total phenolics and flavonoids. To our knowledge, this is the first report about the increment of encapsulation behavior of liposome structures on low water-soluble extract within an aqueous media.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32235611

RESUMEN

Heart and blood vessels disorders comprise one of the main causes of death worldwide. Pharmacologically active natural compounds have been used as a complementary therapy in cardiovascular disease around the world in a traditional way. Dietary, natural bioactive compounds, as well as healthy lifestyles, are considered to prevent coronary artery diseases. Pre-clinical and clinical studies reported that consumption of plant-food bioactive derivatives including polyphenolic compounds, peptides, oligosaccharides, vitamins, unsaturated fatty acids possess protective effects on cardiovascular diseases. This review aims to summarize the cardiovascular risk factors, pre-clinical studies and clinical trials related to cardioprotective properties of the plant-food-derived bioactive compounds. Molecular mechanisms by the natural bioactive compounds exert their cardiovascular protective properties have also been highlighted.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Dieta , Estilo de Vida , Plantas Comestibles , Ensayos Clínicos como Asunto , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-32595597

RESUMEN

Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants' bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants' biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.


Asunto(s)
Anacardium/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Etnofarmacología , Extractos Vegetales/farmacología , Animales , Humanos
7.
Biomolecules ; 9(9)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505888

RESUMEN

Anacardium plants are native to the American tropical regions, and Anacardium occidentale L. (cashew tree) is the most recognized species of the genus. These species contain rich secondary metabolites in their leaf and shoot powder, fruits and other parts that have shown diverse applications. This review describes the habitat and cultivation of Anacardium species, phytochemical and nutritional composition, and their industrial food applications. Besides, we also discuss the secondary metabolites present in Anacardium plants which display great antioxidant and antimicrobial effects. These make the use of Anacardium species in the food industry an interesting approach to the development of green foods.


Asunto(s)
Anacardium/química , Biotecnología , Nutrientes/análisis , Anacardium/crecimiento & desarrollo , Conservación de Alimentos , Fitoquímicos/análisis
8.
Food Chem ; 201: 205-12, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26868567

RESUMEN

Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH.


Asunto(s)
Cacao/química , Alimentos Fortificados/análisis , Morus , Extractos Vegetales/química , Antocianinas/análisis , Quitosano/química , Concentración de Iones de Hidrógeno , Liposomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA