Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Endocrinology ; 145(12): 5786-97, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15358672

RESUMEN

CRH and urotensin I (UI) are neuroendocrine peptides that belong to the superfamily of corticotropin-releasing factors. In mammals, these peptides regulate the stress response and other central nervous system functions, whereas in fish an involvement for UI in osmoregulation has also been suggested. We have identified, characterized, and localized the genes encoding these peptides in a unique fish neuroendocrine organ, the caudal neurosecretory system (CNSS). The CRH and UI precursors, isolated from a European flounder CNSS library, consist of 168 and 147 amino acid residues, respectively, with an overall homology of approximately 50%. Both precursors contain a signal peptide, a divergent cryptic region and a 41-amino acid mature peptide with cleavage and amidation sites. Genomic organization showed that whole CRH and UI coding sequences are contained in a single exon. Northern blot analysis and quantitative PCR of a range of tissues confirmed the CNSS as a major site of expression of both CRH and UI and thus serves as a likely source of circulating peptides. In situ hybridization demonstrated that CRH and UI colocalize to the same cells of the CNSS. Our findings suggest that, in euryhaline fish, the CNSS is a major site of production of CRH and probably contributes to the high circulating levels observed in response to specific environmental challenges. Furthermore, the localization of CRH and UI within the same cell population suggests an early, possibly shared role for these peptides in controlling stress-mediated adaptive plasticity.


Asunto(s)
Hormona Liberadora de Corticotropina/genética , Lenguado/genética , Sistemas Neurosecretores/fisiología , Urotensinas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Hormona Liberadora de Corticotropina/metabolismo , ADN Complementario , Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Urotensinas/metabolismo
2.
Neurobiol Aging ; 35(8): 1821-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24630364

RESUMEN

Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Diets high in fat also increase disease neuropathology and/or cognitive deficits in AD mouse models. However, the effect of a high-fat diet on both the neuropathology and memory impairments in the triple-transgenic mouse model of AD (3xTgAD) is unknown. Therefore, groups of 2-month-old male 3xTgAD and control (non-Tg) mice were maintained on a high-fat or control diet and memory was assessed at the age of 3-4, 7-8, 11-12, and 15-16 months using a series of behavioral tests. A comparable increase in body weight was observed in non-Tg and 3xTgAD mice after high-fat feeding at all ages tested but a significantly greater increase in epididymal adipose tissue was observed in 3xTgAD mice at the age of 7-8, 11-12, and 15-16 months. A high-fat diet caused memory impairments in non-Tg control mice as early as the age of 3-4 months. In 3xTgAD mice, high-fat consumption led to a reduction in the age of onset and an increase in the extent of memory impairments. Some of these effects of high-fat diet on cognition in non-Tg and 3xTgAD mice were transient, and the age at which cognitive impairment was detected depended on the behavioral test. The effect of high-fat diet on memory in the 3xTgAD mice was independent of changes in AD neuropathology as no significant differences in (plaques, oligomers) or tau neuropathology were observed. An acute increase in microglial activation was seen in high-fat fed 3xTgAD mice at the age of 3-4 months but in non-Tg control mice microglial activation was not observed until the age of 15-16 months. These data indicate therefore that a high-fat diet has rapid and long-lasting negative effects on memory in both control and AD mice that are associated with neuroinflammation, but independent of changes in beta amyloid and tau neuropathology in the AD mice.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/psicología , Encéfalo/metabolismo , Encéfalo/patología , Dieta Alta en Grasa/efectos adversos , Memoria , Tejido Adiposo/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Epidídimo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Riesgo , Proteínas tau/metabolismo
3.
Dis Model Mech ; 6(1): 160-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22864021

RESUMEN

Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No ß-amyloid (Aß) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Temperatura Corporal/fisiología , Actividad Motora/fisiología , Envejecimiento/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Animales , Antiinflamatorios no Esteroideos/farmacología , Encéfalo/patología , Encéfalo/fisiopatología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Humanos , Hipotálamo/patología , Hipotálamo/fisiopatología , Ibuprofeno/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovillos Neurofibrilares/patología , Presenilina-1/genética , Proteínas tau/genética , Proteínas tau/metabolismo
4.
PLoS One ; 7(10): e45179, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056194

RESUMEN

Alzheimer's disease (AD) is associated with non-cognitive symptoms such as changes in feeding behaviour that are often characterised by an increase in appetite. Increased food intake is observed in several mouse models of AD including the triple transgenic (3×TgAD) mouse, but the mechanisms underlying this hyperphagia are unknown. We therefore examined feeding behaviour in 3×TgAD mice and tested their sensitivity to exogenous and endogenous satiety factors by assessing food intake and activation of key brain regions. In the behavioural satiety sequence (BSS), 3×TgAD mice consumed more food after a fast compared to Non-Tg controls. Feeding and drinking behaviours were increased and rest decreased in 3×TgAD mice, but the overall sequence of behaviours in the BSS was maintained. Exogenous administration of the satiety factor cholecystokinin (CCK; 8-30 µg/kg, i.p.) dose-dependently reduced food intake in Non-Tg controls and increased inactive behaviour, but had no effect on food intake or behaviour in 3×TgAD mice. CCK (15 µg/kg, i.p.) increased c-Fos protein expression in the supraoptic nucleus of the hypothalamus, and the nucleus tractus solitarius (NTS) and area postrema of the brainstem to the same extent in Non-Tg and 3×TgAD mice, but less c-Fos positive cells were detected in the paraventricular hypothalamic nucleus of CCK-treated 3×TgAD compared to Non-Tg mice. In response to a fast or a period of re-feeding, there was no difference in the number of c-Fos-positive cells detected in the arcuate nucleus of the hypothalamus, NTS and area postrema of 3×TgAD compared to Non-Tg mice. The degree of c-Fos expression in the NTS was positively correlated to food intake in Non-Tg mice, however, this relationship was absent in 3×TgAD mice. These data demonstrate that 3×TgAD mice show increased feeding behaviour and insensitivity to satiation, which is possibly due to defective gut-brain signalling in response to endogenous satiety factors released by food ingestion.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Modelos Animales de Enfermedad , Conducta Alimentaria/fisiología , Saciedad/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Área Postrema/efectos de los fármacos , Área Postrema/metabolismo , Colecistoquinina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Presenilina-1/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Saciedad/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA