Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 16(2): e2003127, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29389974

RESUMEN

During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN) progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Ciclo Celular/genética , Neuronas Motoras/citología , Neurogénesis/genética , Factor de Transcripción 2 de los Oligodendrocitos/fisiología , Proteínas Represoras/fisiología , Análisis de la Célula Individual , Factor de Transcripción HES-1/fisiología , Transcriptoma , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Colorantes Fluorescentes/metabolismo , Regulación de la Expresión Génica/fisiología , Genes Reporteros , Interneuronas/citología , Ratones Transgénicos , Factor de Transcripción 2 de los Oligodendrocitos/genética , Receptores Notch/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Transducción de Señal , Factor de Transcripción HES-1/genética
2.
Genome Res ; 25(1): 41-56, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25294244

RESUMEN

The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly characterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to, and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells. Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically and functionally distinct cis-regulatory elements (CREs). Through motif analysis and ChIP-seq, we identify several of the crucial TF regulators of NS cells. At the core of the network are TFs of the basic helix-loop-helix (bHLH), nuclear factor I (NFI), SOX, and FOX families, with CREs often densely bound by several of these different TFs. We use machine learning to highlight several crucial regulatory features of the network that underpin NS cell self-renewal and multipotency. We validate our predictions by functional analysis of the bHLH TF OLIG2. This TF makes an important contribution to NS cell self-renewal by concurrently activating pro-proliferation genes and preventing the untimely activation of genes promoting neuronal differentiation and stem cell quiescence.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Análisis por Conglomerados , Epigenómica , Modelos Logísticos , Ratones , Análisis por Micromatrices , Modelos Teóricos , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Análisis de Secuencia de ADN
3.
PLoS Biol ; 11(10): e1001676, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24115909

RESUMEN

Distinct classes of neurons and glial cells in the developing spinal cord arise at specific times and in specific quantities from spatially discrete neural progenitor domains. Thus, adjacent domains can exhibit marked differences in their proliferative potential and timing of differentiation. However, remarkably little is known about the mechanisms that account for this regional control. Here, we show that the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) plays a critical role shaping patterns of neuronal differentiation by gating the expression of Fibroblast Growth Factor (FGF) Receptor 3 and responsiveness of progenitors to FGFs. PLZF elevation increases FGFR3 expression and STAT3 pathway activity, suppresses neurogenesis, and biases progenitors towards glial cell production. In contrast, PLZF loss reduces FGFR3 levels, leading to premature neuronal differentiation. Together, these findings reveal a novel transcriptional strategy for spatially tuning the responsiveness of distinct neural progenitor groups to broadly distributed mitogenic signals in the embryonic environment.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Factores de Transcripción de Tipo Kruppel/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Pollos , Epistasis Genética/efectos de los fármacos , Humanos , Interneuronas/citología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuroglía/citología , Neuroglía/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Transcripción Genética/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 110(48): 19438-43, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218595

RESUMEN

To date, only the five most posterior groups of Hox genes, Hox9-Hox13, have demonstrated loss-of-function roles in limb patterning. Individual paralog groups control proximodistal patterning of the limb skeletal elements. Hox9 genes also initiate the onset of Hand2 expression in the posterior forelimb compartment, and collectively, the posterior HoxA/D genes maintain posterior Sonic Hedgehog (Shh) expression. Here we show that an anterior Hox paralog group, Hox5, is required for forelimb anterior patterning. Deletion of all three Hox5 genes (Hoxa5, Hoxb5, and Hoxc5) leads to anterior forelimb defects resulting from derepression of Shh expression. The phenotype requires the loss of all three Hox5 genes, demonstrating the high level of redundancy in this Hox paralogous group. Further analyses reveal that Hox5 interacts with promyelocytic leukemia zinc finger biochemically and genetically to restrict Shh expression. These findings, along with previous reports showing that point mutations in the Shh limb enhancer lead to similar anterior limb defects, highlight the importance of Shh repression for proper patterning of the vertebrate limb.


Asunto(s)
Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Miembro Anterior/metabolismo , Células HEK293 , Humanos , Hibridación in Situ , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Cell Stem Cell ; 28(5): 863-876.e6, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33581058

RESUMEN

Neural stem cell numbers fall rapidly in the hippocampus of juvenile mice but stabilize during adulthood, ensuring lifelong hippocampal neurogenesis. We show that this stabilization of stem cell numbers in young adults is the result of coordinated changes in stem cell behavior. Although proliferating neural stem cells in juveniles differentiate rapidly, they increasingly return to a resting state of shallow quiescence and progress through additional self-renewing divisions in adulthood. Single-cell transcriptomics, modeling, and label retention analyses indicate that resting cells have a higher activation rate and greater contribution to neurogenesis than dormant cells, which have not left quiescence. These changes in stem cell behavior result from a progressive reduction in expression of the pro-activation protein ASCL1 because of increased post-translational degradation. These cellular mechanisms help reconcile current contradictory models of hippocampal neural stem cell (NSC) dynamics and may contribute to the different rates of decline of hippocampal neurogenesis in mammalian species, including humans.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Proliferación Celular , Hipocampo , Ratones , Neurogénesis
8.
Neuron ; 103(6): 1096-1108.e4, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31353074

RESUMEN

During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.


Asunto(s)
Autorrenovación de las Células/genética , Represión Epigenética/genética , Histonas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Sirtuina 1/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Código de Histonas , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , RNA-Seq , Receptores Notch/metabolismo , Transducción de Señal/genética , Vía de Señalización Wnt/genética
9.
Neuron ; 74(2): 314-30, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22542185

RESUMEN

Neuroepithelial attachments at adherens junctions are essential for the self-renewal of neural stem and progenitor cells and the polarized organization of the developing central nervous system. The balance between stem cell maintenance and differentiation depends on the precise assembly and disassembly of these adhesive contacts, but the gene regulatory mechanisms orchestrating this process are not known. Here, we demonstrate that two Forkhead transcription factors, Foxp2 and Foxp4, are progressively expressed upon neural differentiation in the spinal cord. Elevated expression of either Foxp represses the expression of a key component of adherens junctions, N-cadherin, and promotes the detachment of differentiating neurons from the neuroepithelium. Conversely, inactivation of Foxp2 and Foxp4 function in both chick and mouse results in a spectrum of neural tube defects associated with neuroepithelial disorganization and enhanced progenitor maintenance. Together, these data reveal a Foxp-based transcriptional mechanism that regulates the integrity and cytoarchitecture of neuroepithelial progenitors.


Asunto(s)
Tipificación del Cuerpo/genética , Cadherinas/metabolismo , Sistema Nervioso Central/citología , Factores de Transcripción Forkhead/metabolismo , Células Neuroepiteliales/fisiología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Adhesión Celular/genética , Diferenciación Celular/genética , Sistema Nervioso Central/enzimología , Embrión de Pollo , Electroporación , Embrión de Mamíferos , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Fosfopiruvato Hidratasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/metabolismo
10.
Neuron ; 74(1): 79-94, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22500632

RESUMEN

Transcriptional cascades that operate over the course of lineage development are fundamental mechanisms that control cellular differentiation. In the developing central nervous system (CNS), these mechanisms are well characterized during neurogenesis, but remain poorly defined during neural stem cell commitment to the glial lineage. NFIA is a transcription factor that plays a crucial role in the onset of gliogenesis; we found that its induction is regulated by the transcription factor Sox9 and that this relationship mediates the initiation of gliogenesis. Subsequently, Sox9 and NFIA form a complex and coregulate a set of genes induced after glial initiation. Functional studies revealed that a subset of these genes, Apcdd1 and Mmd2, perform key migratory and metabolic roles during astro-gliogenesis, respectively. In sum, these studies delineate a transcriptional regulatory cascade that operates during the initiation of gliogenesis and identifies a unique set of genes that regulate key aspects of astro-glial precursor physiology during development.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción NFI/fisiología , Neuroglía/citología , Factor de Transcripción SOX9/fisiología , Animales , Linaje de la Célula/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Embrión de Pollo , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Ratones , Neuroglía/fisiología , Organogénesis/fisiología , Células Madre/citología , Células Madre/fisiología , Transcripción Genética
11.
Neuron ; 69(5): 833-5, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21382543

RESUMEN

Olig2 is essential for the selection of motor neuron and oligodendrocyte fates and the choice of neural progenitors to either proliferate or differentiate. Three new studies demonstrate that these diverse actions of Olig2 are gated by phosphorylation at two distinct motifs and that Olig2's proliferative function acts in opposition to the p53 tumor suppressor pathway.

12.
Neuron ; 59(2): 226-40, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18667151

RESUMEN

The formation of locomotor circuits depends on the spatially organized generation of motor columns that innervate distinct muscle and autonomic nervous system targets along the body axis. Within each spinal segment, multiple motor neuron classes arise from a common progenitor population; however, the mechanisms underlying their diversification remain poorly understood. Here, we show that the Forkhead domain transcription factor Foxp1 plays a critical role in defining the columnar identity of motor neurons at each axial position. Using genetic manipulations, we demonstrate that Foxp1 establishes the pattern of LIM-HD protein expression and accordingly organizes motor axon projections, their connectivity with peripheral targets, and the establishment of motor pools. These functions of Foxp1 act in accordance with the rostrocaudal pattern provided by Hox proteins along the length of the spinal cord, suggesting a model by which motor neuron diversity is achieved through the coordinated actions of Foxp1 and Hox proteins.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Proteínas de Homeodominio/fisiología , Neuronas Motoras/metabolismo , Proteínas Represoras/fisiología , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Diferenciación Celular/fisiología , Pollos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Embarazo , Médula Espinal/citología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA