Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287178

RESUMEN

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Organofosfatos , Quinazolinas , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis , Aurora Quinasa B/farmacología , Aurora Quinasa B/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos
2.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338943

RESUMEN

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Melanoma , Humanos , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Melanoma/genética , Oncogenes , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
3.
J Cell Sci ; 132(24)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31767623

RESUMEN

Melanocytic cell interactions are integral to skin homeostasis, and affect the outcome of multiple diseases, including cutaneous pigmentation disorders and melanoma. By using automated-microscopy and machine-learning-assisted morphology analysis of primary human melanocytes in co-culture, we performed combinatorial interrogation of melanocyte genotypic variants and functional assessment of lentivirus-introduced mutations. Keratinocyte-induced melanocyte dendricity, an indicator of melanocyte differentiation, was reduced in the melanocortin 1 receptor (MC1R) R/R variant strain and by NRAS.Q61K and BRAF.V600E expression, while expression of CDK4.R24C and RAC1.P29S had no detectable effect. Time-lapse tracking of melanocytes in co-culture revealed dynamic interaction phenotypes and hyper-motile cell states that indicated that, in addition to the known role in activating mitogenic signalling, MEK-pathway-activating mutations may also allow melanocytes to escape keratinocyte control and increase their invasive potential. Expanding this combinatorial platform will identify other therapeutic target mutations and melanocyte genetic variants, as well as increase understanding of skin cell interactions.


Asunto(s)
Fibroblastos/citología , Queratinocitos/citología , Melanocitos/citología , Comunicación Celular/fisiología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Fibroblastos/fisiología , Humanos , Aprendizaje Automático , Transducción de Señal/fisiología
4.
Stem Cells ; 34(4): 902-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26732848

RESUMEN

Since the discovery of endothelial colony forming cells (ECFC), there has been significant interest in their therapeutic potential to treat vascular injuries. ECFC cultures display significant heterogeneity and a hierarchy among cells able to give rise to high proliferative versus low proliferative colonies. Here we aimed to define molecularly this in vitro hierarchy. Based on flow cytometry, CD34 expression levels distinguished two populations. Only CD34 + ECFC had the capacity to reproduce high proliferative potential (HPP) colonies on replating, whereas CD34- ECFCs formed only small clusters. CD34 + ECFCs were the only ones to self-renew in stringent single-cell cultures and gave rise to both CD34 + and CD34- cells. Upon replating, CD34 + ECFCs were always found at the centre of HPP colonies and were more likely in G0/1 phase of cell cycling. Functionally, CD34 + ECFC were superior at restoring perfusion and better engrafted when injected into ischemic hind limbs. Transcriptomic analysis identified cyclin-dependent kinase (CDK) cell cycle inhibiting genes (p16, p21, and p57), the Notch signaling pathway (dll1, dll4, hes1, and hey1), and the endothelial cytokine il33 as highly expressed in CD34 + ECFC. Blocking the Notch pathway using a γ-secretase inhibitor (DAPT) led to reduced expression of cell cycle inhibitors, increased cell proliferation followed by a loss of self-renewal, and HPP colony formation capacity reflecting progenitor exhaustion. Similarly shRNA knockdown of p57 strongly affected self-renewal of ECFC colonies. ECFC hierarchy is defined by Notch signalling driving cell cycle regulators, progenitor quiescence and self-renewal potential.


Asunto(s)
Antígenos CD34/metabolismo , Células Progenitoras Endoteliales/trasplante , Neovascularización Fisiológica/genética , Receptores Notch/genética , Lesiones del Sistema Vascular/terapia , Animales , Linaje de la Célula/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Dipéptidos/administración & dosificación , Células Progenitoras Endoteliales/metabolismo , Citometría de Flujo , Miembro Posterior/patología , Miembro Posterior/trasplante , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Receptores Notch/antagonistas & inhibidores , Receptores Notch/biosíntesis , Medicina Regenerativa , Transducción de Señal/efectos de los fármacos , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
5.
Exp Dermatol ; 26(7): 649-655, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28109167

RESUMEN

The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches.


Asunto(s)
Ciclo Celular , Melanoma/metabolismo , Melanoma/terapia , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/terapia , Antineoplásicos/farmacología , Terapia Combinada , Progresión de la Enfermedad , Sistemas de Liberación de Medicamentos , Humanos , Imagenología Tridimensional , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/uso terapéutico , Esferoides Celulares
6.
Br J Cancer ; 114(4): 417-26, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26882065

RESUMEN

BACKGROUND: Development of targeted therapies for high-grade serous ovarian cancer (HGSC) remains challenging, as contributing molecular pathways are poorly defined or expressed heterogeneously. CUB-domain containing protein 1 (CDCP1) is a cell-surface protein elevated in lung, colorectal, pancreas, renal and clear cell ovarian cancer. METHODS: CUB-domain containing protein 1 was examined by immunohistochemistry in HGSC and fallopian tube. The impact of targeting CDCP1 on cell growth and migration in vitro, and intraperitoneal xenograft growth in mice was examined. Three patient-derived xenograft (PDX) mouse models were developed and characterised for CDCP1 expression. The effect of a monoclonal anti-CDCP1 antibody on PDX growth was examined. Src activation was assessed by western blot analysis. RESULTS: Elevated CDCP1 was observed in 77% of HGSC cases. Silencing of CDCP1 reduced migration and non-adherent cell growth in vitro and tumour burden in vivo. Expression of CDCP1 in patient samples was maintained in PDX models. Antibody blockade of CDCP1 significantly reduced growth of an HGSC PDX. The CDCP1-mediated activation of Src was observed in cultured cells and mouse xenografts. CONCLUSIONS: CUB-domain containing protein 1 is over-expressed by the majority of HGSCs. In vitro and mouse model data indicate that CDCP1 has a role in HGSC and that it can be targeted to inhibit progression of this cancer.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Cistadenocarcinoma Seroso/patología , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/patología , Animales , Antígenos CD/genética , Antígenos de Neoplasias , Biomarcadores de Tumor/metabolismo , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Cistadenocarcinoma Seroso/metabolismo , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Ratones , Clasificación del Tumor , Proteínas de Neoplasias/genética , Neoplasias Ováricas/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Análisis de Supervivencia
7.
Mol Cell Proteomics ; 13(9): 2233-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24866125

RESUMEN

Protein dimerization and oligomerization is commonly used by nature to increase the structural and functional complexity of proteins. Regulated protein assembly is essential to transfer information in signaling, transcriptional, and membrane trafficking events. Here we show that a combination of cell-free protein expression, a proximity based interaction assay (AlphaScreen), and single-molecule fluorescence allow rapid mapping of homo- and hetero-oligomerization of proteins. We have applied this approach to the family of BAR domain-containing sorting nexin (SNX-BAR) proteins, which are essential regulators of membrane trafficking and remodeling in all eukaryotes. Dimerization of BAR domains is essential for creating a concave structure capable of sensing and inducing membrane curvature. We have systematically mapped 144 pairwise interactions between the human SNX-BAR proteins and generated an interaction matrix of preferred dimerization partners for each family member. We find that while nine SNX-BAR proteins are able to form homo-dimers, several including the retromer-associated SNX1, SNX2, and SNX5 require heteromeric interactions for dimerization. SNX2, SNX4, SNX6, and SNX8 show a promiscuous ability to bind other SNX-BAR proteins and we also observe a novel interaction with the SNX3 protein which lacks the BAR domain structure.


Asunto(s)
Nexinas de Clasificación/metabolismo , Dimerización , Humanos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia/métodos
8.
RNA ; 19(2): 230-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23249749

RESUMEN

MicroRNAs are noncoding regulators of gene expression, which act by repressing protein translation and/or degrading mRNA. Many have been shown to drive tumorigenesis in cancer, but functional studies to understand their mode of action are typically limited to single-target genes. In this study, we use synthetic biotinylated miRNA to pull down endogenous targets of miR-182-5p. We identified more than 1000 genes as potential targets of miR-182-5p, most of which have a known function in pathways underlying tumor biology. Specifically, functional enrichment analysis identified components of both the DNA damage response pathway and cell cycle to be highly represented in this target cohort. Experimental validation confirmed that miR-182-5p-mediated disruption of the homologous recombination (HR) pathway is a consequence of its ability to target multiple components in that pathway. Although there is a strong enrichment for the cell cycle ontology, we do not see primary proliferative defects as a consequence of miR-182-5p overexpression. We highlight targets that could be responsible for miR-182-5p-mediated disruption of other biological processes attributed in the literature so far. Finally, we show that miR-182-5p is highly expressed in a panel of human breast cancer samples, highlighting its role as a potential oncomir in breast cancer.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Reparación del ADN/genética , MicroARNs/metabolismo , Proteína BRCA1/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Estudios de Cohortes , Daño del ADN , Femenino , Perfilación de la Expresión Génica , Células HeLa , Recombinación Homóloga/genética , Humanos , MicroARNs/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba
9.
Exp Dermatol ; 23(12): 916-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25346513

RESUMEN

Dopachrome tautomerase (DCT) is involved in the formation of the photoprotective skin pigment eumelanin and has also been shown to have a role in response to apoptotic stimuli and oxidative stress. The effect of DCT on UVR DNA damage responses and survival pathways in human melanocytic cells was examined by knockdown experiments using melanoma cells, neonatal foreskin melanoblasts (MB) in monoculture and in co-culture with human keratinocytes. MB cell strains genotyped as either MC1R WT or MC1R RHC homozygotes, which are known to be deficient in DCT, were transduced with lentivirus vectors for either DCT knockdown or overexpression. We found melanoma cell survival was reduced by DCT depletion and by UVR over time. UVR-induced p53 and pp53-Ser15 levels were reduced with DCT depletion. Knockdown of DCT in MC1R WT and MC1R RHC MB cells reduced their survival after UVR exposure, whereas increased DCT protein levels enhanced survival. DCT depletion reduced p53 and pp53-Ser15 levels in WM266-4 melanoma and MC1R WT MB cells, while MC1R RHC MB cells displayed variable levels. Both MC1R WT and RHC genotypes of MB cells were responsive to UVR at 3 h with increases in both p53 and pp53-Ser15 proteins. MC1R WT MB cell strains in coculture with keratinocytes have an increased cell survival after UVR exposure when compared to those in monoculture, a protective effect which appears to be conferred by the keratinocytes.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Oxidorreductasas Intramoleculares/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Técnicas de Cocultivo , Daño del ADN , Técnicas de Silenciamiento del Gen , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/genética , Queratinocitos/metabolismo , Melanocitos/citología , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 1/metabolismo , Regulación hacia Arriba
10.
Pigment Cell Melanoma Res ; 37(1): 45-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37614154

RESUMEN

Treatment of melanomas with targeted and immunotherapies has proven effective, but resistance to both treatments is a common outcome leaving a high proportion of patients without effective alternative treatment options. Replication stress is a common feature of melanomas, and this is effectively targeted using a combination of checkpoint kinase 1 (CHK1) inhibitor and low-dose hydroxyurea (LDHU). This combination also promotes inflammatory and anti-tumour immune responses in vivo. Melanoma cell lines resistant to BRAF inhibitor (BRAFi) or immune checkpoint inhibitors (ICI) retain their sensitivity to CHK1i + LDHU, with sensitivity similar to that of parental tumours. In vivo, BRAFi-resistant and BRAFi-sensitive parental tumours produce an identical immune response with treatment.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Proteínas Proto-Oncogénicas B-raf , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral
11.
Immunol Cell Biol ; 90(1): 33-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22064708

RESUMEN

Acetylation of lysine residues acts to modify the function of a wide range of proteins. In histones, it affects chromatin structure, which can impact gene transcription, whereas acetylation of transcription factors and heat-shock proteins affect their activity. Deacetylase inhibitors block the dynamic turnover of acetylation resulting in hyperacetylation of target proteins. This can affect a wide range of cellular functions, and in a wide range of tumour cell types promote cytostatic and cytotoxic effects, but has little effect on normal cells. The inhibitors are being used clinically as anti-cancer agents. Although direct effects of the histone deacetylase (HDAC) inhibitors on cancers are beginning to be elucidated, the prospect of concurrent stimulation of the immune response raises hopes for immune attack of the tumour as part of the initial anti-cancer therapy and long-term immune-surveillance of residual or recurrent tumour. This review will examine the evidence for the generation of anti-tumour immunity after treatment of cancers with HDAC inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Acetilación/efectos de los fármacos , Animales , Apoptosis/inmunología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo
12.
Nephron Exp Nephrol ; 122(3-4): 123-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23735887

RESUMEN

BACKGROUND: The incidence and cost of chronic kidney disease (CKD) are increasing. Renal tubular epithelial cell dysfunction and attrition, involving increased apoptosis and cell senescence, are central to the pathogenesis of CKD. The aim here was to use an in vitro model to investigate the separate and cumulative effects of oxidative stress, mitochondrial dysfunction and cell senescence in promoting loss of renal mass. METHODS: Human kidney tubular epithelial cells (HK2) were treated with moderate hydrogen peroxide (H2O2) for oxidative stress, with or without cell cycle inhibition (apigenin, API) for cell senescence. Adenosine triphosphate (ATP) and oxidative stress were measured by ATP assay, lipid peroxidation, total antioxidant capacity, mitochondrial function with confocal microscopy, MitoTracker Red CMXRos and live cell imaging with JC-1. In parallel, cell death and injury (i.e. apoptosis and Bax/Bcl-XL expression, lactate dehydrogenase), cell senescence (SA-ß-galactosidase) and renal regenerative ability (cell proliferation), and their modulation with the anti-oxidant N-acetyl-cysteine (NAC) were investigated. RESULTS: H2O2 and API, separately, increased oxidative stress and mitochondrial dysfunction, apoptosis and cell senescence. Although API caused cell senescence, it also induced oxidative stress at levels similar to H2O2 treatment alone, indicating that senescence and oxidative stress may be intrinsically linked. When H2O2 and API were delivered concurrently, their detrimental effects on renal cell loss were compounded. The antioxidant NAC attenuated apoptosis and senescence, and restored regenerative potential to the kidney. CONCLUSION: Oxidative stress and cell senescence both cause mitochondrial destabilization and cell loss and contribute to the development of the cellular characteristics of CKD.


Asunto(s)
Senescencia Celular , Células Epiteliales/efectos de los fármacos , Túbulos Renales/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Acetilcisteína/farmacología , Apigenina/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Senescencia Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Riñón/fisiopatología , Túbulos Renales/citología , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regeneración
13.
Brain ; 134(Pt 5): 1331-43, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21515906

RESUMEN

Individual tumour cells display diverse functional behaviours in terms of proliferation rate, cell-cell interactions, metastatic potential and sensitivity to therapy. Moreover, sequencing studies have demonstrated surprising levels of genetic diversity between individual patient tumours of the same type. Tumour heterogeneity presents a significant therapeutic challenge as diverse cell types within a tumour can respond differently to therapies, and inter-patient heterogeneity may prevent the development of general treatments for cancer. One strategy that may help overcome tumour heterogeneity is the identification of tumour sub-populations that drive specific disease pathologies for the development of therapies targeting these clinically relevant sub-populations. Here, we have identified a dye-retaining brain tumour population that displays all the hallmarks of a tumour-initiating sub-population. Using a limiting dilution transplantation assay in immunocompromised mice, label-retaining brain tumour cells display elevated tumour-initiation properties relative to the bulk population. Importantly, tumours generated from these label-retaining cells exhibit all the pathological features of the primary disease. Together, these findings confirm dye-retaining brain tumour cells exhibit tumour-initiation ability and are therefore viable targets for the development of therapeutics targeting this sub-population.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Animales , Antígenos CD/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Citometría de Flujo , Fluoresceínas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioblastoma/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones SCID , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Trasplante de Neoplasias/patología , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Proteínas Nucleares/metabolismo , Antígenos O/metabolismo , Succinimidas/metabolismo
14.
Biol Cell ; 103(2): 55-68, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21091437

RESUMEN

BACKGROUND INFORMATION: CDC25 (cell division cycle 25) phosphatases function as activators of CDK (cyclin-dependent kinase)-cyclin complexes to regulate progression through the CDC. We have recently identified a pool of CDC25B at the centrosome of interphase cells that plays a role in regulating centrosome numbers. RESULTS: In the present study, we demonstrate that CDC25B forms a close association with Ctn (centrin) proteins at the centrosome. This interaction involves both N- and C-terminal regions of CDC25B and requires CDC25B binding to its CDK-cyclin substrates. However, the interaction is not dependent on the enzyme activity of CDC25B. Although CDC25B appears to bind indirectly to Ctn2, this association is pertinent to CDC25B localization at the centrosome. We further demonstrate that CDC25B plays a role in maintaining the overall integrity of the centrosome, by regulating the centrosome levels of multiple centrosome proteins, including that of Ctn2. CONCLUSIONS: Our results therefore suggest that CDC25B associates with a Ctn2-containing multiprotein complex in the cytoplasm, which targets it to the centrosome, where it plays a role in maintaining the centrosome levels of Ctn2 and a number of other centrosome components.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Fosfatasas cdc25/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Centrosoma/química , Citoplasma/genética , Citoplasma/metabolismo , Células HeLa , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Fosfatasas cdc25/química , Fosfatasas cdc25/genética
15.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36551637

RESUMEN

Immune checkpoint blockade (ICB) is now standard of care for several metastatic epithelial cancers and prolongs life expectancy for a significant fraction of patients. A hostile tumor microenvironment (TME) induced by intrinsic oncogenic signaling induces an immunosuppressive niche that protects the tumor cells, limiting the durability and efficacy of ICB therapies. Addition of receptor tyrosine kinase inhibitors (RTKi) as potential modulators of an unfavorable local immune environment has resulted in moderate life expectancy improvement. Though the combination strategy of ICB and RTKi has shown significantly better results compared to individual treatment, the benefits and adverse events are additive whereas synergy of benefit would be preferable. There is therefore a need to investigate the potential of inhibitors other than RTKs to reduce malignant cell survival while enhancing anti-tumor immunity. In the last five years, preclinical studies have focused on using small molecule inhibitors targeting cell cycle and DNA damage regulators such as CDK4/6, CHK1 and poly ADP ribosyl polymerase (PARP) to selectively kill tumor cells and enhance cytotoxic immune responses. This review provides a comprehensive overview of the available drugs that attenuate immunosuppression and overcome hostile TME that could be used to boost FDA-approved ICB efficacy in the near future.

16.
J Biol Chem ; 285(45): 34364-70, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20801879

RESUMEN

Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser(323) being the highest affinity binding and is highly homologous to the Ser(216) 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser(323) increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser(323) phosphorylation is maintained into mitosis, but phosphorylation of Ser(321) disrupts 14-3-3 binding to Ser(323), mimicking the effect of inhibiting Ser(323) phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser(321) appears to have a role in stabilizing 14-3-3 binding to Ser(323), and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser(323). Ser(321) is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser(321) acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser(323) and enhancing the dephosphorylation of Ser(323) to block 14-3-3 binding to this site.


Asunto(s)
Proteínas 14-3-3/metabolismo , Mitosis/fisiología , Fosfatasas cdc25/metabolismo , Proteínas 14-3-3/genética , Sitios de Unión/fisiología , Regulación hacia Abajo/fisiología , Células HeLa , Humanos , Fosforilación/fisiología , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Serina/genética , Serina/metabolismo , Fosfatasas cdc25/genética
18.
Oncogenesis ; 10(5): 41, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33993200

RESUMEN

Defective DNA repair is being demonstrated to be a useful target in cancer treatment. Currently, defective repair is identified by specific gene mutations, however defective repair is a common feature of cancers without these mutations. DNA damage triggers cell cycle checkpoints that are responsible for co-ordinating cell cycle arrest and DNA repair. Defects in checkpoint signalling components such as ataxia telangiectasia mutated (ATM) occur in a low proportion of cancers and are responsible for reduced DNA repair and increased genomic instability. Here we have investigated the AURKA-PLK1 cell cycle checkpoint recovery pathway that is responsible for exit from the G2 phase cell cycle checkpoint arrest. We demonstrate that dysregulation of PP6 and AURKA maintained elevated PLK1 activation to promote premature exit from only ATM, and not ATR-dependent checkpoint arrest. Surprisingly, depletion of the B55α subunit of PP2A that negatively regulates PLK1 was capable of overcoming ATM and ATR checkpoint arrests. Dysregulation of the checkpoint recovery pathway reduced S/G2 phase DNA repair efficiency and increased genomic instability. We found a strong correlation between dysregulation of the PP6-AURKA-PLK1-B55α checkpoint recovery pathway with signatures of defective homologous recombination and increased chromosomal instability in several cancer types. This work has identified an unrealised source of G2 phase DNA repair defects and chromosomal instability that are likely to be sensitive to treatments targeting defective repair.

19.
Cancers (Basel) ; 13(15)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34359633

RESUMEN

Drugs selectively targeting replication stress have demonstrated significant preclinical activity, but this has not yet translated into an effective clinical treatment. Here we report that targeting increased replication stress with a combination of Checkpoint kinase 1 inhibitor (CHK1i) with a subclinical dose of hydroxyurea targets also promotes pro-inflammatory cytokine/chemokine expression that is independent of cGAS-STING pathway activation and immunogenic cell death in human and murine melanoma cells. In vivo, this drug combination induces tumour regression which is dependent on an adaptive immune response. It increases cytotoxic CD8+ T cell activity, but the major adaptive immune response is a pronounced NKT cell tumour infiltration. Treatment also promotes an immunosuppressive tumour microenvironment through CD4+ Treg and FoxP3+ NKT cells. The number of these accumulated during treatment, the increase in FoxP3+ NKT cells numbers correlates with the decrease in activated NKT cells, suggesting they are a consequence of the conversion of effector to suppressive NKT cells. Whereas tumour infiltrating CD8+ T cell PD-1 and tumour PD-L1 expression was increased with treatment, peripheral CD4+ and CD8+ T cells retained strong anti-tumour activity. Despite increased CD8+ T cell PD-1, combination with anti-PD-1 did not improve response, indicating that immunosuppression from Tregs and FoxP3+ NKT cells are major contributors to the immunosuppressive tumour microenvironment. This demonstrates that therapies targeting replication stress can be well tolerated, not adversely affect immune responses, and trigger an effective anti-tumour immune response.

20.
Mol Pharmacol ; 78(3): 436-43, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20538840

RESUMEN

Histone deacetylase inhibitors (HDACis) are currently in trial or are in clinical use for the treatment of a number of tumor types. The clinical efficacy of HDACis can be partly attributed to the modulation of the cell cycle by the HDACis. Here, we have examined the effects of N-(2-aminophenyl)-4-((4-pyridin-3-ylpyrimidin-2-ylamino)methyl)benzamide (MGCD0103), a class I-selective histone deacetylase inhibitor, on the cell cycle and cell killing. Surprisingly, MGCD0103 treatment failed to initiate a G(1)-phase arrest but caused marked accumulation of cells in G(2)/M at 6 and 12 h after treatment and was cytotoxic 24 h after treatment. These cell cycle effects were considerably distinct from the effects of suberic bishydroxamic acid, a representative of the pan-isoform HDACi used in this study. MGCD0103 shared the ability of the pan-isoform HDACi to trigger defective mitosis and promote mitotic slippage. Likewise, it also specifically targeted tumor cells and was nontoxic to normal nontransformed cells. However, MGDC0103 also seemed to disrupt normal microtubule spindle formation, whereas HDACis generally have only a minor effect on spindle formation. The effect of MGCD0103 on spindle formation was shown to be a consequence of microtubule destabilization. This is the first example of an HDACi with microtubule destabilizing activity, and the combined effects of this drug have advantages for its therapeutic use.


Asunto(s)
Benzamidas/farmacología , Inhibidores de Histona Desacetilasas , Benzamidas/uso terapéutico , Ciclo Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Histona Desacetilasas/uso terapéutico , Humanos , Microtúbulos/metabolismo , Microtúbulos/patología , Mitosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pirimidinas , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA