Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474957

RESUMEN

This paper presents a novel approach for preload measurement of bolted connections, specifically tailored for offshore wind applications. The proposed method combines robotics, Phased Array Ultrasonic Testing (PAUT), nonlinear acoustoelasticity, and Finite Element Analysis (FEA). Acceptable defects, below a pre-defined size, are shown to have an impact on preload measurement, and therefore conducting simultaneous defect detection and preload measurement is discussed in this paper. The study demonstrates that even slight changes in the orientation of the ultrasonic transducer, the non-automated approach, can introduce a significant error of up to 140 MPa in bolt stress measurement and therefore a robotic approach is employed to achieve consistent and accurate measurements. Additionally, the study emphasises the significance of considering average preload for comparison with ultrasonic data, which is achieved through FEA simulations. The advantages of the proposed robotic PAUT method over single-element approaches are discussed, including the incorporation of nonlinearity, simultaneous defect detection and stress measurement, hardware and software adaptability, and notably, a substantial improvement in measurement accuracy. Based on the findings, the paper strongly recommends the adoption of the robotic PAUT approach for preload measurement, whilst acknowledging the required investment in hardware, software, and skilled personnel.

2.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015795

RESUMEN

Inspection of components with surface discontinuities is an area that volumetric Non-Destructive Testing (NDT) methods, such as ultrasonic and radiographic, struggle in detection and characterisation. This coupled with the industrial desire to detect surface-breaking defects of components at the point of manufacture and/or maintenance, to increase design lifetime and further embed sustainability in their business models, is driving the increased adoption of Eddy Current Testing (ECT). Moreover, as businesses move toward Industry 4.0, demand for robotic delivery of NDT has grown. In this work, the authors present the novel implementation and use of a flexible robotic cell to deliver an eddy current array to inspect stress corrosion cracking on a nuclear canister made from 1.4404 stainless steel. Three 180-degree scans at different heights on one side of the canister were performed, and the acquired impedance data were vertically stitched together to show the full extent of the cracking. Axial and transversal datasets, corresponding to the transmit/receive coil configurations of the array elements, were simultaneously acquired at transmission frequencies 250, 300, 400, and 450 kHz and allowed for the generation of several impedance C-scan images. The variation in the lift-off of the eddy current array was innovatively minimised through the use of a force-torque sensor, a padded flexible ECT array and a PI control system. Through the use of bespoke software, the impedance data were logged in real-time (≤7 ms), displayed to the user, saved to a binary file, and flexibly post-processed via phase-rotation and mixing of the impedance data of different frequency and coil configuration channels. Phase rotation alone demonstrated an average increase in Signal to Noise Ratio (SNR) of 4.53 decibels across all datasets acquired, while a selective sum and average mixing technique was shown to increase the SNR by an average of 1.19 decibels. The results show how robotic delivery of eddy current arrays, and innovative post-processing, can allow for repeatable and flexible surface inspection, suitable for the challenges faced in many quality-focused industries.


Asunto(s)
Programas Informáticos , Ultrasonido , Impedancia Eléctrica , Relación Señal-Ruido
3.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34833768

RESUMEN

Robotised Non-Destructive Testing (NDT) has revolutionised the field, increasing the speed of repetitive scanning procedures and ability to reach hazardous environments. Application of robot-assisted NDT within specific industries such as remanufacturing and Aersopace, in which parts are regularly moulded and susceptible to non-critical deformation has however presented drawbacks. In these cases, digital models for robotic path planning are not always available or accurate. Cutting edge methods to counter the limited flexibility of robots require an initial pre-scan using camera-based systems in order to build a CAD model for path planning. This paper has sought to create a novel algorithm that enables robot-assisted ultrasonic testing of unknown surfaces within a single pass. Key to the impact of this article is the enabled autonomous profiling with sensors whose aperture is several orders of magnitude smaller than the target surface, for surfaces of any scale. Potential applications of the algorithm presented include autonomous drone and crawler inspections of large, complex, unknown environments in addition to situations where traditional metrological profiling equipment is not practical, such as in confined spaces. In simulation, the proposed algorithm has completely mapped significantly curved and complex shapes by utilising only local information, outputting a traditional raster pattern when curvature is present only in a single direction. In practical demonstrations, both curved and non-simple surfaces were fully mapped with no required operator intervention. The core limitations of the algorithm in practical cases is the effective range of the applied sensor, and as a stand-alone method it lacks the required knowledge of the environment to prevent collisions. However, since the approach has met success in fully scanning non-obstructive but still significantly complex surfaces, the objectives of this paper have been met. Future work will focus on low-accuracy environmental sensing capabilities to tackle the challenges faced. The method has been designed to allow single-pass scans for Conformable Wedge Probe UT scanning, but may be applied to any surface scans in the case the sensor aperture is significantly smaller than the part.


Asunto(s)
Algoritmos , Robótica , Simulación por Computador
4.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34372316

RESUMEN

The growth of the automated welding sector and emerging technological requirements of Industry 4.0 have driven demand and research into intelligent sensor-enabled robotic systems. The higher production rates of automated welding have increased the need for fast, robotically deployed Non-Destructive Evaluation (NDE), replacing current time-consuming manually deployed inspection. This paper presents the development and deployment of a novel multi-robot system for automated welding and in-process NDE. Full external positional control is achieved in real time allowing for on-the-fly motion correction, based on multi-sensory input. The inspection capabilities of the system are demonstrated at three different stages of the manufacturing process: after all welding passes are complete; between individual welding passes; and during live-arc welding deposition. The specific advantages and challenges of each approach are outlined, and the defect detection capability is demonstrated through inspection of artificially induced defects. The developed system offers an early defect detection opportunity compared to current inspection methods, drastically reducing the delay between defect formation and discovery. This approach would enable in-process weld repair, leading to higher production efficiency, reduced rework rates and lower production costs.

5.
Sensors (Basel) ; 20(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961726

RESUMEN

Aperiodic sparse 2D ultrasonic array configurations, including random array, log spiral array, and sunflower array, have been considered for their potential as conformable transducers able to image within a focal range of 30-80 mm, at an operating frequency of 2 MHz. Optimisation of the imaging performance of potential array patterns has been undertaken based on their simulated far field directivity functions. Two evaluation criteria, peak sidelobe level (PSL) and integrated sidelobe ratio (ISLR), are used to access the performance of each array configuration. Subsequently, a log spiral array pattern with -19.33 dB PSL and 2.71 dB ISLR has been selected as the overall optimal design. Two prototype transducers with the selected log spiral array pattern have been fabricated and characterised, one using a fibre composite element composite array transducer (CECAT) structure, the other using a conventional 1-3 composite (C1-3) structure. The CECAT device demonstrates improved coupling coefficient (0.64 to 0.59), reduced mechanical cross-talk between neighbouring array elements (by 10 dB) and improved operational bandwidth (by 16.5%), while the C1-3 device performs better in terms of sensitivity (~50%). Image processing algorithms, such as Hough transform and morphological opening, have been implemented to automatically detect and dimension particles located within a fluid-filled tube structure, in a variety of experimental scenarios, including bespoke phantoms using tissue mimicking material. Experiments using the fabricated CECAT log spiral 2D array transducer demonstrated that this algorithmic approach was able to detect the walls of the tube structure and stationary anomalies within the tube with a precision of ~0.1 mm.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Transductores , Ultrasonografía , Algoritmos , Diseño de Equipo
6.
Sci Rep ; 14(1): 8541, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609508

RESUMEN

Ultrasonic imaging, using ultrasonic phased arrays, has an enormous impact in science, medicine and society and is a widely used modality in many application fields. The maximum amount of information which can be captured by an array is provided by the data acquisition method capturing the complete data set of signals from all possible combinations of ultrasonic generation and detection elements of a dense array. However, capturing this complete data set requires long data acquisition time, large number of array elements and transmit channels and produces a large volume of data. All these reasons make such data acquisition unfeasible due to the existing phased array technology or non-applicable to cases requiring fast measurement time. This paper introduces the concept of an adaptive data acquisition process, the Selective Matrix Capture (SMC), which can adapt, dynamically, to specific imaging requirements for efficient ultrasonic imaging. SMC is realised experimentally using Laser Induced Phased Arrays (LIPAs), that use lasers to generate and detect ultrasound. The flexibility and reconfigurability of LIPAs enable the evolution of the array configuration, on-the-fly. The SMC methodology consists of two stages: a stage for detecting and localising regions of interest, by means of iteratively synthesising a sparse array, and a second stage for array optimisation to the region of interest. The delay-and-sum is used as the imaging algorithm and the experimental results are compared to images produced using the complete generation-detection data set. It is shown that SMC, without a priori knowledge of the test sample, is able to achieve comparable results, while preforming ∼ 10 times faster data acquisition and achieving ∼ 10 times reduction in data size.

7.
J Acoust Soc Am ; 133(6): 4077-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23742360

RESUMEN

The process of echolocation is accomplished by bats partly using the beam profiles associated with their ear shapes that allow for discrimination between different echo directions. Indeed, knowledge of the emitted signal characteristic and measurement of the echo travel time from a target make it possible to compensate for attenuation due to distance, and to focus on filtering through the receivers' beam profiles by comparing received echoes to the original signal at all frequencies in the spectrum of interest. From this basis, a beam profile method to localize a target in three-dimensional space for an ultrasonic sensor system equipped with an emitter and two receivers is presented. Simulations were conducted with different noise levels, and only the contribution of the receivers' beam profiles was considered to estimate the orientation of the target with respect to the receivers. The beam pattern of the Phyllostomus discolor's ear was adopted as that of a receiver. Analyses of beam resolution and frequency ranges were conducted to enhance the accuracy of orientation estimates. The choice of appropriate resolution and frequency ranges guarantee that error mean values for most of the orientations are within [0.5°, 1.5°], even in noisy situations: Signal-to-noise ratio values considered in this work are 35 and 50 dB.


Asunto(s)
Acústica/instrumentación , Biomimética/instrumentación , Quirópteros , Ecolocación , Lateralidad Funcional , Orientación , Localización de Sonidos , Ultrasonido/instrumentación , Animales , Diseño de Equipo
8.
J Acoust Soc Am ; 133(6): 4044-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23742357

RESUMEN

Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32054576

RESUMEN

In this article, ultrasonic phased arrays are deployed as an imaging tool for industrial process analysis. Such arrays are typically used for sonar, medical diagnosis, and nondestructive testing; however, they have not yet been applied to industrial process analysis. The precise positioning of array elements and high frequencies possible with this technology mean that highly focused images can be generated, which cannot currently be achieved using ultrasound tomography. This article aims to highlight the potential of this technology for the measurement of bubble size distribution (BSD) and to demonstrate its application to both intrusive and noninvasive process measurements. Ultrasound images of bubble reflectors are generated using the total focusing method deployed using a 32-element, 5-MHz linear phased array, and an image processing algorithm for BSD determination is presented and evaluated under stationary and dynamic acquisition conditions. It is found that the sizing accuracy is within 10% for stationary reflectors larger than 4λ in diameter and that the algorithm is stable across the expected spatial variation of reflectors. The phased array is coupled to a six-axis robotic arm to scan a solid sample containing bubble reflectors at velocities up to 500 mms-1. The sizing accuracy is within 45% for bubbles larger than 4λ in diameter and at velocities up to 300 mms-1. However, above this velocity, the algorithm breaks down for reflectors smaller than 9λ in diameter. The ultrasound system is applied to a stream of air bubbles rising through water, which is verified via photographic analysis. Images were generated both intrusive and noninvasive, via a 10-mm Perspex barrier, to the process stream. The high bubble density in the process stream introduced scattering, limiting the measurement repeatability and the sample size in the measured distribution. Notwithstanding, this result demonstrates the potential of this technology to size bubbles for intrusive and noninvasive process analyses.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía , Algoritmos , Diseño de Equipo , Modelos Químicos , Ultrasonografía/instrumentación , Ultrasonografía/métodos
10.
Artículo en Inglés | MEDLINE | ID: mdl-30296221

RESUMEN

Wider operational bandwidth is an important requirement of an ultrasound transducer across many applications. In nature, it can be observed that several hearing organs possess a broad operating bandwidth by having a varying length scales structure. Moreover, conventional 1-3 piezoelectric composite transducers have been widely recognized for their wider bandwidth over their piezoelectric ceramic counterparts. In this paper, a novel 1-3 piezoelectric composite design using a fractal geometry, known as the Sierpinski Gasket (SG), is proposed in order to explore the potential of further extending the operational bandwidth and sensitivity of the transducer. Two equivalent 1-3 piezocomposite designs are compared to this end, one with a conventional periodic parallelepiped-shaped pillar structure and one with the SG fractal geometry, both theoretically, using a finite-element analysis package, and experimentally. The transmit voltage response and open-circuit voltage response are used to illustrate bandwidth improvement from the fractal composite design. Following the simulation results, a 580-kHz single-element transducer, utilizing the proposed SG fractal microstructure, is fabricated using a pillar placement methodology. The performance of the prototyped device is characterized and compared with a conventional 1-3 composite design, as well as with a commercial ultrasound transducer. In the one-way transmission mode, a bandwidth improvement of 27.2% and sensitivity enhancement of 3.8 dB can be found with the SG fractal design compared to an equivalent conventional composite design and up 105.1% bandwidth improvement when compared to the commercial transducer. In the one-way reception mode, the bandwidth improvement for the SG fractal design is 2.5% and 32.9% when compared to the conventional and commercial transducers, respectively.

11.
Artículo en Inglés | MEDLINE | ID: mdl-17036784

RESUMEN

This paper describes a noninvasive technique utilizing the acousto-optic effect, laser interferometry, and tomographic principles that have been implemented to measure the acoustic fields generated by low-frequency ultrasonic transducers operating into sealed, water-loaded vessels commonly used in industrial processing applications. A customized scanning frame, incorporating both linear and rotational stages, has been developed to facilitate manipulation of the laser head and vessel under evaluation. First, transmitted pressure profiles in air are predicted from surface displacement data acquired directly by laser measurement of the vibrating aperture. These profiles were then used to verify the measured fields obtained via conventional tomographic scanning procedures, coupled with laser interferometry, applied within a draft-proof scanning facility under free-field conditions. Next, the finite element code PZF(lex) was employed for the prediction of pressure fields within cylindrical cell configurations. Finally, precise manipulation of the laser firing angle and position was implemented in order to compensate for the effects of refraction at the cell wall boundaries, and to re-establish the projections required for the reconstruction algorithm. The experimental results demonstrate good corroboration with the PZF(lex) predictions, validating its application of ultrasound as a virtual prototyping tool for the design of high power ultrasonic test vessels.


Asunto(s)
Análisis de Falla de Equipo/instrumentación , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Manejo de Especímenes/instrumentación , Transductores , Ultrasonografía/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Manejo de Especímenes/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-16921903

RESUMEN

This work describes an investigation into the first order parasitic mode (i.e., that closest to the fundamental thickness mode) that can occur in 2-2 and 1-3 thickness drive piezoelectric composite transducers. Specifically, the authors compare the performance of piezoceramic and piezocrystal composites with a common passive phase. A local Lamb wave approach is used to describe the generation of such modes, and the validity of this theory is investigated over the entire volume fraction range. It is shown that, when the parasitic mode is primarily generated by Lamb wave activity in the passive phase, both active materials demonstrate similar behavior. However, at higher volume fractions, the first order mode is related to the lateral resonance of the active material, and quite different behavior may be observed between the two sets of devices. The phase velocity of the parasitic modes in each device configuration was investigated by a combination of experimental measurement on a number of transducers along with simulations using the finite-element code PZFlex. Both 2-2 and 1-3 composites made from the single crystal materials pzn-4.5%pt, pzn-8%pt, and pmn-30%pt were investigated along with composites made from pzt5h ceramic. The PZFlex results are compared with experimental impedance analysis and laser scanning of surface displacement, with good agreement demonstrated. By comparing two very different active materials, additional insight into parasitic resonant activity within composite devices is demonstrated.

13.
Proc Math Phys Eng Sci ; 472(2188): 20150500, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27274683

RESUMEN

The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.

14.
Artículo en Inglés | MEDLINE | ID: mdl-16212257

RESUMEN

This paper describes the development of a flexible piezoelectric transducer for the generation and detection of ultrasonic symmetrical Lamb waves in plate-like structures. This piezoplatelet transducer structure comprises an array of miniature piezoceramic plates embedded within a soft setting polymer filler material, combining the efficiency of the active piezoceramic phase with a degree of flexibility, which is a function of the platelet/polymer dimensions. For many condition-monitoring applications, the generation of ultrasonic Lamb waves is often appropriate, and this was achieved by incorporating interdigital design techniques via the transducer electrode pattern. The performance of the piezoplatelet transducer structure was evaluated using a combination of linear systems and finite-element modeling, substantiated by experimental results. Importantly, the transducer is shown to operate as an ensemble of platelets, each operating in the thickness mode and well decoupled from neighboring piezoelectric elements. Using this transducer configuration, an unimodal s1 Lamb wave, at 1.45 MHz, has been generated and detected in a 3-mm thick steel plate. Furthermore, a propagation distance of almost 1 m was recorded for s0 Lamb wave generation/detection in a fiber-reinforced composite plate.

15.
Proc Math Phys Eng Sci ; 471(2175): 20140958, 2015 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-25792967

RESUMEN

Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time-frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time-frequency domain framework to assist in flaw identification and classification.

16.
Artículo en Inglés | MEDLINE | ID: mdl-25965684

RESUMEN

Ultrasonic phased array systems have become increasingly popular in the last 10 years as tools for flaw detection and characterization within the nondestructive testing industry. The existence and location of flaws can often be deduced via images generated from the data captured by these arrays. A factor common to these imaging techniques is the subjective thresholding required to estimate the size of the flaw. This paper puts forward an objective approach which employs a mathematical model. By exploiting the relationship between the width of the central lobe of the scattering matrix and the crack size, an analytical expression for the crack length is reached via the Born approximation. Conclusions are then drawn on the minimum resolvable crack length of the method and it is thus shown that the formula holds for subwavelength defects. An analytical expression for the error that arises from the discrete nature of the array is then derived and it is observed that the method becomes less sensitive to the discretization of the array as the distance between the flaw and array increases. The methodology is then extended and tested on experimental data collected from welded austenitic plates containing a lack-of-fusion crack of 6 mm length. An objective sizing matrix (OSM) is produced by assessing the similarity between the scattering matrices arising from experimentally collected data with those arising from the Born approximation over a range of crack lengths and frequencies. Initially, the global minimum of the OSM is taken as the objective estimation of the crack size, giving a measurement of 7 mm. This is improved upon by the adoption of a multifrequency averaging approach, with which an improved crack size estimation of 6.4 mm is obtained.

17.
Bioinspir Biomim ; 10(5): 056007, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26334174

RESUMEN

The directional properties of bat ears as receivers is a current area of interest in ultrasound research. This paper presents a new approach to analyse the relationship between morphological features and acoustical properties of the external ear of bat species. The beam pattern of Rousettus leschenaultii's right ear is measured and compared to that of receiver structures whose design is inspired by the bat ear itself and made of appropriate geometric shapes. The regular shape of these receivers makes it possible to control the key reception parameters and thus to understand the effect on the associated beam pattern of the parameters themselves. Measurements show one receiver structure has a beam pattern very similar to that of R. leschenaultii's ear, thus explaining the function of individual parts constituting its ear. As it is applicable to all bat species, this approach can provide a useful tool to investigate acoustics in bats, and possibly other mammals.


Asunto(s)
Quirópteros/anatomía & histología , Quirópteros/fisiología , Oído Externo/anatomía & histología , Oído Externo/fisiología , Ecolocación/fisiología , Modelos Biológicos , Animales , Simulación por Computador , Modelos Anatómicos , Dispersión de Radiación , Sonido
18.
Chem Commun (Camb) ; 51(40): 8465-8, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25891849

RESUMEN

We demonstrate an in situ ultrasonic approach to influence self-assembly across the supramolecular to micron length scales, showing enhancement of supramolecular interactions, chirality and orientation, which depends on the peptide sequence and solvent environment. This is the first successful demonstration of using oscillating pressure waves to generate anisotropic organo- and hydrogels consisting of oriented tripeptides structures.


Asunto(s)
Hidrogeles/química , Nanoestructuras/química , Oligopéptidos/química , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Sonicación , Espectroscopía Infrarroja por Transformada de Fourier
19.
Artículo en Inglés | MEDLINE | ID: mdl-24569252

RESUMEN

Applications involving high-power ultrasound are expanding rapidly as ultrasonic intensification opportunities are identified in new fields. This is facilitated through new technological developments and an evolution of current systems to tackle challenging problems. It is therefore important to continually update both the scientific and commercial communities on current system performance and limitations. To achieve this objective, this paper addresses two key aspects of high-power ultrasonic systems. In the first part, the review of high-power applications focuses on industrial applications and documents the developing technology from its early cleaning applications through to the advanced sonochemistry, cutting, and water treatment applications used today. The second part provides a comprehensive overview of measurement techniques used in conjunction with high-power ultrasonic systems. This is an important and evolving field which enables design and process engineers to optimize the behavior and/or operation of key metrics of system performance, such as field distribution or cavitation intensity.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/instrumentación , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Radiometría/instrumentación , Radiometría/métodos , Sonicación/instrumentación , Sonicación/métodos , Diseño de Equipo , Ondas de Choque de Alta Energía
20.
Artículo en Inglés | MEDLINE | ID: mdl-24569253

RESUMEN

Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.


Asunto(s)
Diseño Asistido por Computadora , Ensayo de Materiales/instrumentación , Modelos Teóricos , Transductores , Ultrasonografía/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Ondas de Choque de Alta Energía , Ensayo de Materiales/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA