Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Microbiol ; 25(3): 661-674, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527341

RESUMEN

Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Eucariontes , Filogenia , Plancton , Agua
2.
Langmuir ; 39(4): 1562-1572, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36661856

RESUMEN

Slippery silicone-oil-infused (SOI) surfaces have recently emerged as a promising alternative to conventional anti-infection coatings for urinary catheters to combat biofilm and encrustation formation. Benefiting from the ultralow low hysteresis and slippery behavior, the liquid-like SOI coatings have been found to effectively reduce bacterial adhesion under both static and flow conditions. However, in real clinical settings, the use of catheters may also trigger local inflammation, leading to release of host-secreted proteins, such as fibrinogen (Fgn) that deposits on the catheter surfaces, creating a niche that can be exploited by uropathogens to cause infections. In this work, we report on the fabrication of a silicone oil-infused silver-releasing catheter which exhibited superior durability and robust antibacterial activity in aqueous conditions, reducing biofilm formation of two key uropathogens Escherichia coli and Proteus mirabilis by ∼99%, when compared with commercial all-silicone catheters after 7 days while remaining noncytotoxic toward L929 mouse fibroblasts. After exposure to Fgn, the oil-infused surfaces induced conformational changes in the protein which accelerated adsorption onto the surfaces. The deposited Fgn blocked the interaction of silver with the bacteria and served as a scaffold, which promoted bacterial colonization, resulting in a compromised antibiofilm activity. Fgn binding also facilitated the migration of Proteus mirabilis over the catheter surfaces and accelerated the deposition and spread of crystalline biofilm. Our findings suggest that the use of silicone oil-infused silver-releasing urinary catheters may not be a feasible strategy to combat infections and associated complications arising from severe inflammation.


Asunto(s)
Cateterismo Urinario , Catéteres Urinarios , Animales , Ratones , Catéteres Urinarios/microbiología , Aceites de Silicona , Plata/farmacología , Biopelículas , Siliconas
3.
Environ Microbiol ; 24(2): 667-677, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33955141

RESUMEN

Manganese oxide minerals can become enriched in a variety of metals through adsorption and redox processes, and this forms the basis for a close geochemical relationship between Mn oxide phases and Co. Since oxalate-producing fungi can effect geochemical transformation of Mn oxides, an understanding of the fate of Co during such processes could provide new insights on the geochemical behaviour of Co. In this work, the transformation of Mn oxides by Aspergillus niger was investigated using a Co-bearing manganiferous laterite, and a synthetic Co-doped birnessite. A. niger could transform laterite in both fragmented and powder forms, resulting in formation of biomineral crusts that were composed of Mn oxalates hosting Co, Ni and, in transformed laterite fragments, Mg. Total transformation of Co-doped birnessite resulted in precipitation of Co-bearing Mn oxalate. Fungal transformation of the Mn oxide phases included Mn(III,IV) reduction by oxalate, and may also have involved reduction of Co(III) to Co(II). These findings demonstrate that oxalate-producing fungi can influence Co speciation in Mn oxides, with implications for other hosted metals including Al and Fe. This work also provides further understanding of the roles of fungi as geoactive agents which can inform potential applications in metal bioremediation, recycling and biorecovery.


Asunto(s)
Compuestos de Manganeso , Manganeso , Aspergillus niger , Cobalto , Oxidación-Reducción , Óxidos
4.
Environ Sci Technol ; 56(1): 672-680, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34905360

RESUMEN

Fungal-mediated extracellular reactive oxygen species (ROS) are essential for biogeochemical cycles of carbon, nitrogen, and contaminants in terrestrial environments. These ROS levels may be modulated by iron nanoparticles that possess intrinsic peroxidase (POD)-like activity (nanozymes). However, it remains largely undescribed how fungi modulate the POD-like activity of the iron nanoparticles with various crystallinities and crystal facets. Using well-controlled fungal-mineral cultivation experiments, here, we showed that fungi possessed a robust defect engineering strategy to modulate the POD-like activity of the attached iron minerals by decreasing the catalytic activity of poorly ordered ferrihydrite but enhancing that of well-crystallized hematite. The dynamics of POD-like activity were found to reside in molecular trade-offs between lattice oxygen and oxygen vacancies in the iron nanoparticles, which may be located in a cytoprotective fungal exoskeleton. Together, our findings unveil coupled POD-like activity and oxygen redox dynamics during fungal-mineral interactions, which increase the understanding of the catalytic mechanisms of POD-like nanozymes and microbial-mediated biogeochemical cycles of nutrient elements as well as the attenuation of contaminants in terrestrial environments.


Asunto(s)
Hierro , Nanopartículas , Hongos , Minerales , Nanopartículas/química , Nutrientes , Peroxidasas
5.
Environ Sci Technol ; 56(12): 8132-8141, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35561278

RESUMEN

Fungal-mineral interactions can effectively alleviate cellular stress from organic pollutants, the production of which are expected to rapidly increase owing to the Earth moving into an unprecedented geological epoch, the Anthropocene. The underlying mechanisms that may enable fungi to combat organic pollution during fungal-mineral interactions remain unclear. Inspired by the natural fungal sporulation process, we demonstrate for the first time that fungal biomineralization triggers the formation of an ultrathin (hundreds of nanometers thick) exoskeleton, enriched in nanosized iron (oxyhydr)oxides and biomolecules, on the hyphae. Mapped biochemical composition of this coating at a subcellular scale via high spatial resolution (down to 50 nm) synchrotron radiation-based techniques confirmed aromatic C, C-N bonds, amide carbonyl, and iron (oxyhydr)oxides as the major components of the coatings. This nanobiohybrid system appeared to impart a strong (×2) biofunctionality for fungal degradation of bisphenol A through altering molecular-level trade-offs between lattice oxygen and oxygen vacancy. Together, fungal coatings could act as "artificial spores", which enable fungi to combat physical and chemical stresses in natural environments, providing crucial insights into fungal biomineralization and coevolution of the Earth's lithosphere and biosphere.


Asunto(s)
Contaminantes Ambientales , Dispositivo Exoesqueleto , Hierro , Minerales/química , Óxidos/química , Oxígeno
6.
Appl Microbiol Biotechnol ; 106(2): 821-833, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34981166

RESUMEN

Cerium has many modern applications such as in renewable energies and the biosynthesis of nanomaterials. In this research, natural struvite was solubilized by Aspergillus niger and the biomass-free struvite leachate was investigated for its ability to recover cerium. It was shown that struvite was completed solubilized following 2 weeks of fungal growth, which released inorganic phosphate (Pi) from the mineral by the production of oxalic acid. Scanning electron microscopy (SEM) showed that crystals with distinctive morphologies were formed in the natural struvite leachate after mixing with Ce3+. Energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of cerium phosphate hydrate [Ce(PO4)·H2O] at lower Ce concentrations and a mixture of phosphate and cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] at higher Ce concentrations. The formation of these biogenic Ce minerals leads to the removal of > 99% Ce from solution. Thermal decomposition experiments showed that the biogenic Ce phosphates could be transformed into a mixture of CePO4 and CeO2 (cerianite) after heat treatment at 1000 °C. These results provide a new perspective of the fungal biotransformation of soluble REE species using struvite leachate, and also indicate the potential of using the recovered REE as biomaterial precursors with possible applications in the biosynthesis of novel nanomaterials, elemental recycling and biorecovery. KEY POINTS: • Cerium was recovered using a struvite leachate produced by A. niger. • Oxalic acid played a major role in struvite solubilization and Ce phosphate biorecovery. • Resulting nanoscale mineral products could serve as a precursor for Ce oxide synthesis.


Asunto(s)
Aspergillus niger , Cerio , Biotransformación , Ácido Oxálico , Fosfatos , Estruvita
7.
Environ Microbiol ; 23(7): 3970-3986, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33459476

RESUMEN

Geoactive fungi play a significant role in bioweathering of rock and mineral substrates. Monazite is a phosphate mineral containing the rare earth elements (REE) cerium, lanthanum and neodymium. Little is known about geomicrobial transformations of REE-bearing minerals which are also relevant to REE biorecovery from terrestrial and extra-terrestrial reserves. The geoactive soil fungus Aspergillus niger colonized monazite in solid and liquid growth media without any apparent growth inhibition. In a glucose-minerals salts medium, monazite enhanced growth and mycelium extensively covered rock particle surfaces, probably due to the provision of phosphate and essential trace metals. Teeth-like and pagoda-like etching patterns indicated monazite dissolution, with extensive precipitation of secondary oxalate minerals. Biomechanical forces ensued causing aggressive bioweathering effects by tunnelling, penetration and splitting of the ore particles. High amounts of oxalic acid (~46 mM) and moderate amounts of citric acid (~5 mM) were produced in liquid media containing 2% (wt./vol.) monazite, and REE and phosphate were released. Correlation analysis suggested that citric acid was more effective than oxalic acid in REE mobilization, although the higher concentration of oxalic acid also implied complexant activity, as well as the prime role in REE-oxalate precipitation.


Asunto(s)
Aspergillus niger , Metales de Tierras Raras , Ácido Oxálico , Fosfatos
8.
Environ Microbiol ; 23(2): 893-907, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32783346

RESUMEN

Fungal-mineral interactions can produce large amounts of biogenic nano-size (~ 1-100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal-mineral cultivation exhibit intrinsic peroxidase-like activity. Specifically, the average peroxidase-like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X-ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non-lattice oxygen, through occupying surface oxygen-vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox-active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 µm) oxygen-film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation-based micro-FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal-mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Óxido Ferrosoférrico/metabolismo , Hypocreales/crecimiento & desarrollo , Hypocreales/metabolismo , Peroxidasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ecosistema , Óxido Ferrosoférrico/química , Hypocreales/química , Hypocreales/genética , Nanopartículas de Magnetita/química , Minerales/química , Oxidación-Reducción , Peroxidasas/química , Peroxidasas/genética , Espectroscopía Infrarroja por Transformada de Fourier
9.
Microbiology (Reading) ; 167(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34882532

RESUMEN

Biomineralization is a ubiquitous process in organisms to produce biominerals, and a wide range of metallic nanoscale minerals can be produced as a consequence of the interactions of micro-organisms with metals and minerals. Copper-bearing nanoparticles produced by biomineralization mechanisms have a variety of applications due to their remarkable catalytic efficiency, antibacterial properties and low production cost. In this study, we demonstrate the biotechnological potential of copper carbonate nanoparticles (CuNPs) synthesized using a carbonate-enriched biomass-free ureolytic fungal spent culture supernatant. The efficiency of the CuNPs in pollutant remediation was investigated using a dye (methyl red) and a toxic metal oxyanion, chromate Cr(VI). The biogenic CuNPs exhibited excellent catalytic properties in a Fenton-like reaction to degrade methyl red, and efficiently removed Cr(VI) from solution due to both adsorption and reduction of Cr(VI). X-ray photoelectron spectroscopy (XPS) identified the oxidation of reducing Cu species of the CuNPs during the reaction with Cr(VI). This work shows that urease-positive fungi can play an important role not only in the biorecovery of metals through the production of insoluble nanoscale carbonates, but also provides novel and simple strategies for the preparation of sustainable nanomineral products with catalytic properties applicable to the bioremediation of organic and metallic pollutants, solely and in mixtures.


Asunto(s)
Cobre , Nanopartículas , Carbonatos/metabolismo , Cromatos , Cobre/metabolismo , Hongos/metabolismo
10.
Mol Ecol ; 30(10): 2390-2403, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33714213

RESUMEN

Disentangling the biogeographic patterns of rare and abundant microbes is essential in order to understand the generation and maintenance of microbial diversity with respect to the functions they provide. However, little is known about ecological assembly processes and environmental adaptation of rare and abundant microbes across large spatial-scale wetlands. Using Illumina sequencing and multiple statistical analyses, we characterized the taxonomic and phylogenetic diversity of rare and abundant bacteria and fungi in Qinghai-Tibet Plateau wetland soils. Abundant microbial taxa exhibited broader environmental thresholds and stronger phylogenetic signals for ecological traits than rare ones. By contrast, rare taxa showed higher sensitivity to environmental changes and closer phylogenetic clustering than abundant ones. The null model analysis revealed that dispersal limitation belonging to stochastic process dominated community assemblies of abundant bacteria, and rare and abundant fungi, while variable selection belonging to deterministic process governed community assembly of rare bacteria. Neutral model analysis and variation partitioning analysis further confirmed that abundant microbes were less environmentally constrained. Soil ammonia nitrogen was the crucial factor in mediating the balance between stochasticity and determinism of both rare and abundant microbes. Abundant microbes may have better environmental adaptation potential and are less dispersed by environmental changes than rare ones. Our findings extend knowledge of the adaptation of rare and abundant microbes to ongoing environmental change and could facilitate prediction of biodiversity loss caused probably by climate change and human activity in the Qinghai-Tibet Plateau wetlands.


Asunto(s)
Suelo , Humedales , Humanos , Filogenia , Microbiología del Suelo , Tibet
11.
Adv Appl Microbiol ; 114: 111-139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33934851

RESUMEN

Clay minerals are important reactive centers in the soil system. Their interactions with microorganisms are ubiquitous and wide-ranging, affecting growth and function, interactions with other organisms, including plants, biogeochemical processes and the fate of organic and inorganic pollutants. Clay minerals have a large specific surface area and cation exchange capacity (CEC) per unit mass, and are abundant in many soil systems, especially those of agricultural significance. They can adsorb microbial cells, exudates, and enzymes, organic and inorganic chemical species, nutrients, and contaminants, and stabilize soil organic matter. Bacterial modification of clays appears to be primarily due to biochemical mechanisms, while fungi can exhibit both biochemical and biomechanical mechanisms, the latter aided by their exploratory filamentous growth habit. Such interactions between microorganisms and clays regulate many critical environmental processes, such as soil development and transformation, the formation of soil aggregates, and the global cycling of multiple elements. Applications of biomodified clay minerals are of relevance to the fields of both agricultural management and environmental remediation. This review provides an overview of the interactions between bacteria, fungi and clay minerals, considers some important gaps in current knowledge, and indicates perspectives for future research.


Asunto(s)
Minerales , Contaminantes del Suelo , Adsorción , Arcilla , Suelo
12.
Mar Drugs ; 19(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946845

RESUMEN

Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers.


Asunto(s)
Antibacterianos/farmacología , Organismos Acuáticos/metabolismo , Bacterias/efectos de los fármacos , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Catéteres de Permanencia/microbiología , Infección Hospitalaria/tratamiento farmacológico , Tensoactivos/farmacología , Cateterismo Urinario/instrumentación , Catéteres Urinarios/microbiología , Animales , Antibacterianos/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Infecciones Relacionadas con Catéteres/diagnóstico , Infecciones Relacionadas con Catéteres/microbiología , Catéteres de Permanencia/efectos adversos , Infección Hospitalaria/diagnóstico , Infección Hospitalaria/microbiología , Diseño de Equipo , Humanos , Metabolismo Secundario , Propiedades de Superficie , Tensoactivos/aislamiento & purificación , Cateterismo Urinario/efectos adversos , Catéteres Urinarios/efectos adversos
13.
Environ Microbiol ; 22(4): 1635-1648, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32114711

RESUMEN

Monazite is a naturally occurring lanthanide (Ln) phosphate mineral [Ln x (PO4 ) y ] and is the main industrial source of the rare earth elements (REE), cerium and lanthanum. Endeavours to ensure the security of supply of elements critical to modern technologies view bioprocessing as a promising alternative or adjunct to new methods of element recovery. However, relatively little is known about microbial interactions with REE. Fungi are important geoactive agents in the terrestrial environment and well known for properties of mineral transformations, particularly phosphate solubilization. Accordingly, this research examined the capability of a ubiquitous geoactive soil fungus, Aspergillus niger, to affect the mobility of REE in monazite and identify possible mechanisms for biorecovery. It was found that A. niger could grow in the presence of monazite and mediated the formation of secondary Ce and La-containing biominerals with distinct morphologies including thin sheets, orthorhombic tablets, acicular needles, and rosette aggregates which were identified as cerium oxalate decahydrate (Ce2 (C2 O4 )3 ·10H2 O) and lanthanum oxalate decahydrate (La2 (C2 O4 )3 ·10H2 O). In order to identify a means for biorecovery of REE via oxalate precipitation the bioleaching and bioprecipitation potential of biomass-free spent culture supernatants was investigated. Although such indirect bioleaching of REE was low from the monazite with maximal lanthanide release reaching >40 mg L-1 , leached REE were efficiently precipitated as Ce and La oxalates of high purity, and did not contain Nd, Pr and Ba, present in the original monazite. Geochemical modelling of the speciation of oxalates and phosphates in the reaction system confirmed that pure Ln oxalates can be formed under a wide range of chemical conditions. These findings provide fundamental knowledge about the interactions with and biotransformation of REE present in a natural mineral resource and indicate the potential of oxalate bioprecipitation as a means for efficient biorecovery of REE from solution.


Asunto(s)
Aspergillus niger/metabolismo , Metales de Tierras Raras/metabolismo , Oxalatos/metabolismo , Biotransformación
14.
Environ Microbiol ; 22(4): 1588-1602, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32079035

RESUMEN

Struvite (magnesium ammonium phosphate-MgNH4 PO4 ·6H2 O), which can extensively crystallize in wastewater treatments, is a potential source of N and P as fertilizer, as well as a means of P conservation. However, little is known of microbial interactions with struvite which would result in element release. In this work, the geoactive fungus Aspergillus niger was investigated for struvite transformation on solid and in liquid media. Aspergillus niger was capable of solubilizing natural (fragments and powder) and synthetic struvite when incorporated into solid medium, with accompanying acidification of the media, and extensive precipitation of magnesium oxalate dihydrate (glushinskite, Mg(C2 O4 ).2H2 O) occurring under growing colonies. In liquid media, A. niger was able to solubilize natural and synthetic struvite releasing mobile phosphate (PO4 3- ) and magnesium (Mg2+ ), the latter reacting with excreted oxalate resulting in precipitation of magnesium oxalate dihydrate which also accumulated within the mycelial pellets. Struvite was also found to influence the morphology of A. niger mycelial pellets. These findings contribute further understanding of struvite solubilization, element release and secondary oxalate formation, relevant to the biogeochemical cycling of phosphate minerals, and further directions utilizing these mechanisms in environmental biotechnologies such as element biorecovery and biofertilizer applications.


Asunto(s)
Aspergillus niger/metabolismo , Magnesio/metabolismo , Ácido Oxálico/metabolismo , Fosfatos/metabolismo , Estruvita/metabolismo , Biomineralización , Biotransformación , Fertilizantes
15.
Environ Microbiol ; 22(4): 1535-1546, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31319015

RESUMEN

Although many fungi are known to be able to perform bioweathering of rocks and minerals, little information is available concerning the role of basidiomycetes in this process. The wood-rotting basidiomycete Schizophyllum commune was investigated for its ability to degrade black slate, a rock rich in organic carbon. Mechanical pressure of hyphae and extracellular polymeric substances was investigated for biophysical weathering. A mixed ß1-3/ß1-6 glucan, likely schizophyllan that is well known from S. commune, could be identified on black slate surfaces. Secretion of siderophores and organic acids as biochemical weathering agents was shown. Both may contribute to biochemical weathering in addition to enzymatic functions. Previously, the exoenzyme laccase was believed to attack organic the matter within the black slate, thereby releasing metals from the rock. Here, overexpression of laccase showed enhanced dissolution of quartz phases by etching and pitting. At the same time, the formation of a new secondary mineral phase, whewellite, could be demonstrated. Hence, a more comprehensive understanding of biophysical as well as biochemical weathering by S. commune could be reached and unexpected mechanisms like quartz dissolution linked to shale degradation.


Asunto(s)
Minerales/química , Schizophyllum/metabolismo , Ácidos/química , Ácidos/metabolismo , Lacasa/química , Lacasa/metabolismo , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Presión , Sideróforos/química , Sideróforos/metabolismo
16.
Environ Microbiol ; 22(6): 2346-2364, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32250010

RESUMEN

Microbial reduction of soluble selenium (Se) or tellurium (Te) species results in immobilization as elemental forms and this process has been employed in soil bioremediation. However, little is known of direct and indirect fungal interactions with Se-/Te-bearing ores. In this research, the ability of Phoma glomerata to effect transformation of selenite and tellurite was investigated including interaction with Se and Te present in sulfide ores from the Kisgruva Proterozoic volcanogenic deposit. Phoma glomerata could precipitate elemental Se and Te as nanoparticles, intracellularly and extracellularly, when grown with selenite or tellurite. The nanoparticles possessed various surface capping molecules, with formation being influenced by extracellular polymeric substances. The presence of sulfide ore also affected the production of exopolysaccharide and protein. Although differences were undetectable in gross Se and Te ore levels before and after fungal interaction using X-ray fluorescence, laser ablation inductively coupled plasma mass spectrometry of polished flat ore surfaces revealed that P. glomerata could effect changes in Se/Te distribution and concentration indicating Se/Te enrichment in the biomass. These findings provide further understanding of fungal roles in metalloid transformations and are relevant to the geomicrobiology of environmental metalloid cycling as well as informing applied approaches for Se and Te immobilization, biorecovery or bioremediation.


Asunto(s)
Phoma/metabolismo , Selenio/metabolismo , Telurio/metabolismo , Biodegradación Ambiental , Biotransformación , Nanopartículas , Sulfuros , Erupciones Volcánicas
17.
Appl Microbiol Biotechnol ; 104(21): 8999-9008, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32940735

RESUMEN

Much research has been carried out on the bacterial bioremediation of soil contaminated with petroleum hydrocarbons and toxic metals but much less is known about the potential of fungi in sites that are co-contaminated with both classes of pollutants. This article documents the roles of fungi in soil polluted with both petroleum hydrocarbons and toxic metals as well as the mechanisms involved in the biotransformation of such substances. Soil characteristics (e.g., structural components, pH, and temperature) and intracellular or excreted extracellular enzymes and metabolites are crucial factors which affect the efficiency of combined pollutant transformations. At present, bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals is mostly focused on the removal, detoxification, or degradation efficiency of single or composite pollutants of each type. Little research has been carried out on the metabolism of fungi in response to complex pollutant stress. To overcome current bottlenecks in understanding fungal bioremediation, the potential of new approaches, e.g., gradient diffusion film technology (DGT) and metabolomics, is also discussed. KEY POINTS: • Fungi play important roles in soil co-contaminated with TPH and toxic metals. • Soil characteristics, enzymes, and metabolites are major factors in bioremediation. • DGT and metabolomics can be applied to overcome current bottlenecks.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hongos , Hidrocarburos/toxicidad , Petróleo/toxicidad , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
18.
Appl Microbiol Biotechnol ; 104(16): 7155-7164, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32577802

RESUMEN

Aureobasidium pullulans is a ubiquitous and widely distributed fungus in the environment, and exhibits substantial tolerance against toxic metals. However, the interactions between metals and metalloids with the copious extracellular polymeric substances (EPS) produced by A. pullulans and possible relationships to tolerance are not well understood. In this study, it was found that mercury (Hg) and selenium (Se), as selenite, not only significantly inhibited growth of A. pullulans but also affected the composition of produced EPS. Lead (Pb) showed little influence on EPS yield or composition. The interactions of EPS from A. pullulans with the tested metals and metalloids depended on the specific element and their concentration. Fluorescence intensity measurements of the EPS showed that the presence of metal(loid)s stimulated the production of extracellular tryptophan-like and aromatic protein-like substances. Examination of fluorescence quenching and calculation of binding constants revealed that the fluorescence quenching process for Hg; arsenic (As), as arsenite; and Pb to EPS were mainly governed by static quenching which resulted in the formation of a stable non-fluorescent complexes between the EPS and metal(loid)s. Se showed no significant interaction with the EPS according to fluorescence quenching. These results provide further understanding of the interactions between metals and metalloids and EPS produced by fungi and their contribution to metal(loid) tolerance. KEY POINTS: • Metal(loid)s enhanced production of tryptophan- and aromatic protein-like substances. • Non-fluorescent complexes formed between the EPS and tested metal(loid)s. • EPS complexation and binding of metal(loid)s was dependent on the tested element. • Metal(loid)-induced changes in EPS composition contributed to metal(loid) tolerance.


Asunto(s)
Aureobasidium/efectos de los fármacos , Fluorescencia , Metaloides/farmacología , Metales/farmacología , Aureobasidium/crecimiento & desarrollo , Matriz Extracelular de Sustancias Poliméricas/química , Mercurio/farmacología , Selenio/farmacología
19.
Appl Microbiol Biotechnol ; 104(15): 6501-6511, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32500269

RESUMEN

Microplastics in the biosphere are currently of great environmental concern because of their potential toxicity for aquatic biota and human health and association with pathogenic microbiota. Microplastics can occur in high abundance in all aquatic environments, including oceans, rivers and lakes. Recent findings have highlighted the role of microplastics as important vectors for microorganisms, which can form fully developed biofilms on this artificial substrate. Microplastics therefore provide new microbial niches in the aquatic environment, and the developing biofilms may significantly differ in microbial composition compared to natural free-living or particle-associated microbial populations in the surrounding water. In this article, we discuss the composition and ecological function of the microbial communities found in microplastic biofilms. The potential factors that influence the richness and diversity of such microbial microplastic communities are also evaluated. Microbe-microbe and microbe-substrate interactions in microplastic biofilms have been little studied and are not well understood. Multiomics tools together with morphological, physiological and biochemical analyses should be combined to provide a more comprehensive overview on the ecological role of microplastic biofilms. These new microbial niches have so far unknown consequences for microbial ecology and environmental processes in aquatic ecosystems. More knowledge is required on the microbial community composition of microplastic biofilms and their ecological functions in order to better evaluate consequences for the environment and animal health, including humans, especially since the worldwide abundance of microplastics is predicted to dramatically increase. Key Points • Bacteria are mainly studied in community analyses: fungi are neglected. • Microbial colonization of microplastics depends on substrate, location and time. • Community ecology is a promising approach to investigate microbial colonization. • Biodegradable plastics, and ecological roles of microplastic biofilms, need analysis.


Asunto(s)
Biopelículas , Interacciones Microbianas , Microbiota/fisiología , Microplásticos , Microbiología del Agua , Ecosistema , Lagos/microbiología , Ríos/microbiología , Contaminantes Químicos del Agua
20.
Appl Microbiol Biotechnol ; 104(1): 417-425, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31781818

RESUMEN

In this research, the capabilities of culture supernatants generated by the oxalate-producing fungus Aspergillus niger for the bioprecipitation and biorecovery of cobalt and nickel were investigated, as was the influence of extracellular polymeric substances (EPS) on these processes. The removal of cobalt from solution was >90% for all tested Co concentrations: maximal nickel recovery was >80%. Energy-dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) confirmed the formation of cobalt and nickel oxalate. In a mixture of cobalt and nickel, cobalt oxalate appeared to predominate precipitation and was dependent on the mixture ratios of the two metals. The presence of EPS together with oxalate in solution decreased the recovery of nickel but did not influence the recovery of cobalt. Concentrations of extracellular protein showed a significant decrease after precipitation while no significant difference was found for extracellular polysaccharide concentrations before and after oxalate precipitation. These results showed that extracellular protein rather than extracellular polysaccharide played a more important role in influencing the biorecovery of metal oxalates from solution. Excitation-emission matrix (EEM) fluorescence spectroscopy showed that aromatic protein-like and hydrophobic acid-like substances from the EPS complexed with cobalt but did not for nickel. The humic acid-like substances from the EPS showed a higher affinity for cobalt than for nickel.


Asunto(s)
Aspergillus niger/metabolismo , Cobalto/aislamiento & purificación , Medios de Cultivo/química , Níquel/aislamiento & purificación , Marcadores de Afinidad , Biomasa , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Fluorescencia , Polisacáridos Fúngicos/metabolismo , Oxalatos/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA