Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 236, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183702

RESUMEN

BACKGROUND: The Plasmodium genus of malaria parasites encodes several families of antigen-encoding genes. These genes tend to be hyper-variable, highly recombinogenic and variantly expressed. The best-characterized family is the var genes, exclusively found in the Laveranian subgenus of malaria parasites infecting humans and great apes. Var genes encode major virulence factors involved in immune evasion and the maintenance of chronic infections. In the human parasite P. falciparum, var gene recombination and diversification appear to be promoted by G-quadruplex (G4) DNA motifs, which are strongly associated with var genes in P. falciparum. Here, we investigated how this association might have evolved across Plasmodium species - both Laverania and also more distantly related species which lack vars but encode other, more ancient variant gene families. RESULTS: The association between var genes and G4-forming motifs was conserved across Laverania, spanning ~ 1 million years of evolutionary time, with suggestive evidence for evolution of the association occurring within this subgenus. In rodent malaria species, G4-forming motifs were somewhat associated with pir genes, but this was not conserved in the Laverania, nor did we find a strong association of these motifs with any gene family in a second outgroup of avian malaria parasites. Secondly, we compared two different G4 prediction algorithms in their performance on extremely A/T-rich Plasmodium genomes, and also compared these predictions with experimental data from G4-seq, a DNA sequencing method for identifying G4-forming motifs. We found a surprising lack of concordance between the two algorithms and also between the algorithms and G4-seq data. CONCLUSIONS: G4-forming motifs are uniquely strongly associated with Plasmodium var genes, suggesting a particular role for G4s in recombination and diversification of these genes. Secondly, in the A/T-rich genomes of Plasmodium species, the choice of prediction algorithm may be particularly influential when studying G4s in these important protozoan pathogens.


Asunto(s)
G-Cuádruplex , Malaria/parasitología , Motivos de Nucleótidos , Plasmodium/genética , Plasmodium/patogenicidad , Proteínas Protozoarias/genética , Animales , Filogenia , Plasmodium/clasificación , Virulencia/genética
2.
bioRxiv ; 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36778337

RESUMEN

Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different sexes, resulting in a heterokaryotic mycelial body made up of genetically different nuclei 1 . Using population genomics data, we discovered mushrooms of the deadly invasive Amanita phalloides are also homokaryotic, evidence of sexual reproduction by single individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia also promote outcrossing. We discovered death cap mating is controlled by a single mating-type locus ( A. phalloides is bipolar), but the development of homokaryotic mushrooms appears to bypass mating-type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, revealing a profound similarity between plant, animal and fungal invasions 2,3 .

3.
Nat Commun ; 14(1): 6560, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875491

RESUMEN

Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different mating types, resulting in a heterokaryotic mycelial body made up of genetically different nuclei. Using population genomics data and experiments, we discover mushrooms of the invasive and deadly Amanita phalloides can also be homokaryotic; evidence of sexual reproduction by single, unmated individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia are also involved in outcrossing. We find death cap mating is controlled by a single mating type locus, but the development of homokaryotic mushrooms appears to bypass mating type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, suggesting a profound similarity between plant, animal and fungal invasions.


Asunto(s)
Agaricales , Basidiomycota , Humanos , Animales , Agaricales/genética , Reproducción/genética , Basidiomycota/genética , Genotipo , Genes del Tipo Sexual de los Hongos
4.
mBio ; 14(5): e0176823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37750720

RESUMEN

IMPORTANCE: Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Mozambique , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Genómica , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA