RESUMEN
Despite advances in cancer genomics and the increased use of genomic medicine, metastatic cancer is still mostly an incurable and fatal disease. With diminishing returns from traditional drug discovery strategies, and high clinical failure rates, more emphasis is being placed on alternative drug discovery platforms, such as ex vivo approaches. Ex vivo approaches aim to embed biological relevance and inter-patient variability at an earlier stage of drug discovery, and to offer more precise treatment stratification for patients. However, these techniques also have a high potential to offer personalised therapies to patients, complementing and enhancing genomic medicine. Although an array of approaches are available to researchers, only a minority of techniques have made it through to direct patient treatment within robust clinical trials. Within this review, we discuss the current challenges to ex vivo approaches within clinical practice and summarise the contemporary literature which has directed patient treatment. Finally, we map out how ex vivo approaches could transition from a small-scale, predominantly research based technology to a robust and validated predictive tool. In future, these pre-clinical approaches may be integrated into clinical cancer pathways to assist in the personalisation of therapy choices and to hopefully improve patient experiences and outcomes.
Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos , Oncología Médica/métodos , Genómica/métodosRESUMEN
Photodynamic therapy delivers more targeted cell killing than classical chemotherapy. It uses light-absorbing compounds, photosensitizers (PSs), to generate lethal reactive oxygen species (ROS) at sites of localized irradiation. Transition metal complexes are attractive PSs due to their photostability, visible-light absorption, and high ROS yields. Here, we introduce a low-molecular weight, photostable iridium complex, [Ir(thpy)2(benz)]Cl, 1, that localizes to the Golgi apparatus, mitochondria, and endoplasmic reticulum, absorbs visible light, phosphoresces strongly, generates 1O2 with 43% yield, and undergoes cellular elimination after 24 h. 1 shows low dark toxicity and under remarkably low doses (3 min, 20-30 mJ s-1 cm-2) of 405 or 455 nm light, it causes killing of bladder (EJ), malignant melanoma (A375), and oropharyngeal (OPSCC72) cancer cells, with high phototoxic indices > 100-378. 1 is also an efficient PS in 3D melanoma spheroids, with repeated short-time irradiation causing cumulative killing.
Asunto(s)
Complejos de Coordinación , Iridio , Luz , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Iridio/química , Iridio/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/efectos de la radiación , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Especies Reactivas de Oxígeno/metabolismoRESUMEN
With diminishing returns and high clinical failure rates from traditional preclinical and animal-based drug discovery strategies, more emphasis is being placed on alternative drug discovery platforms. Ex vivo approaches represent a departure from both more traditional preclinical animal-based models and clinical-based strategies and aim to address intra-tumoural and inter-patient variability at an earlier stage of drug discovery. Additionally, these approaches could also offer precise treatment stratification for patients within a week of tumour resection in order to direct tailored therapy. One tumour group that could significantly benefit from such ex vivo approaches are high-grade gliomas, which exhibit extensive heterogeneity, cellular plasticity and therapy-resistant glioma stem cell (GSC) niches. Historic use of murine-based preclinical models for these tumours has largely failed to generate new therapies, resulting in relatively stagnant and unacceptable survival rates of around 12-15 months post-diagnosis over the last 50 years. The near universal use of DNA damaging chemoradiotherapy after surgical resection within standard-of-care (SoC) therapy regimens provides an opportunity to improve current treatments if we can identify efficient drug combinations in preclinical models that better reflect the complex inter-/intra-tumour heterogeneity, GSC plasticity and inherent DNA damage resistance mechanisms. We have therefore developed and optimised a high-throughput ex vivo drug screening platform; GliExP, which maintains GSC populations using immediately dissociated fresh surgical tissue. As a proof-of-concept for GliExP, we have optimised SoC therapy responses and screened 30+ small molecule therapeutics and preclinical compounds against tumours from 18 different patients, including multi-region spatial heterogeneity sampling from several individual tumours. Our data therefore provides a strong basis to build upon GliExP to incorporate combination-based oncology therapeutics in tandem with SoC therapies as an important preclinical alternative to murine models (reduction and replacement) to triage experimental therapeutics for clinical translation and deliver rapid identification of effective treatment strategies for individual gliomas.