Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059517

RESUMEN

Cartilaginous fish (sharks, rays, and chimeras) comprise the oldest living jawed vertebrates with a mammalian-like adaptive immune system based on immunoglobulins (Ig), T-cell receptors (TCRs), and the major histocompatibility complex (MHC). Here, we show that the cartilaginous fish "adaptive MHC" is highly regimented and compact, containing (i) a classical MHC class Ia (MHC-Ia) region containing antigen processing (antigen peptide transporters and immunoproteasome) and presenting (MHC-Ia) genes, (ii) an MHC class II (MHC-II) region (with alpha and beta genes) with linkage to beta-2-microglobulin (ß2m) and bromodomain-containing 2, (iii) nonclassical MHC class Ib (MHC-Ib) regions with 450 million-year-old lineages, and (iv) a complement C4 associated with the MHC-Ia region. No MHC-Ib genes were found outside of the elasmobranch MHC. Our data suggest that both MHC-I and MHC-II genes arose after the second round of whole-genome duplication (2R) on a human chromosome (huchr) 6 precursor. Further analysis of MHC paralogous regions across early branching taxa from all jawed vertebrate lineages revealed that Ig/TCR genes likely arose on a precursor of the huchr9/12/14 MHC paralog. The ß2m gene is linked to the Ig/TCR genes in some vertebrates suggesting that it was present at 1R, perhaps as the donor of C1 domain to the primordial MHC gene. In sum, extant cartilaginous fish exhibit a conserved and prototypical MHC genomic organization with features found in various vertebrates, reflecting the ancestral arrangement for the jawed vertebrates.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Vertebrados , Animales , Humanos , Complejo Mayor de Histocompatibilidad/genética , Vertebrados/genética , Peces/genética , Proteínas/genética , Presentación de Antígeno , Mamíferos/genética , Evolución Molecular , Filogenia
2.
J Immunol ; 207(3): 824-836, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301841

RESUMEN

Cartilaginous fish, or Chondrichthyes, are the oldest extant vertebrates to possess the MHC and the Ig superfamily-based Ag receptors, the defining genes of the gnathostome adaptive immune system. In this work, we have identified a novel MHC lineage, UEA, a complex multigene nonclassical class I family found in sharks (division Selachii) but not detected in chimaeras (subclass Holocephali) or rays (division Batoidea). This new lineage is distantly related to the previously reported nonclassical class I lineage UCA, which appears to be present only in dogfish sharks (order Squaliformes). UEA lacks conservation of the nine invariant residues in the peptide (ligand)-binding regions (PBR) that bind to the N and C termini of bound peptide in most vertebrate classical class I proteins, which are replaced by relatively hydrophobic residues compared with the classical UAA. In fact, UEA and UCA proteins have the most hydrophobic-predicted PBR of all identified chondrichthyan class I molecules. UEA genes detected in the whale shark and bamboo shark genome projects are MHC linked. Consistent with UEA comprising a very large gene family, we detected weak expression in different tissues of the nurse shark via Northern blotting and RNA sequencing. UEA genes fall into three sublineages with unique characteristics in the PBR. UEA shares structural and genetic features with certain nonclassical class I genes in other vertebrates, such as the highly complex XNC nonclassical class I genes in Xenopus, and we anticipate that each shark gene, or at least each sublineage, will have a unique function, perhaps in bacterial defense.


Asunto(s)
Genes MHC Clase I , Tiburones , Secuencia de Aminoácidos , Animales , Antígenos de Histocompatibilidad Clase I/genética , Filogenia , Tiburones/genética , Tiburones/inmunología
3.
Mol Ecol ; 28(23): 5115-5132, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614047

RESUMEN

Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small-to-moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small-to-moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate-to-large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.


Asunto(s)
Inmunidad Adaptativa/genética , Evolución Molecular , Inmunocompetencia/genética , Complejo Mayor de Histocompatibilidad/genética , Inmunidad Adaptativa/inmunología , Alelos , Animales , Animales Salvajes , Variación Genética/genética , Variación Genética/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Selección Genética/genética , Estrigiformes/genética , Estrigiformes/inmunología , Vertebrados/genética , Vertebrados/inmunología
4.
Heredity (Edinb) ; 120(5): 396-406, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29362475

RESUMEN

High rates of gene duplication and the highest levels of functional allelic diversity in vertebrate genomes are the main hallmarks of the major histocompatibility complex (MHC), a multigene family with a primordial role in pathogen recognition. The usual tight linkage among MHC gene duplicates may provide an opportunity for the evolution of haplotypes that associate functionally divergent alleles and thus grant the transmission of optimal levels of diversity to coming generations. Even though such associations may be a crucial component of disease resistance, this hypothesis has been given little attention in wild populations. Here, we leveraged pedigree data from a barn owl (Tyto alba) population to characterize MHC haplotype structure across two MHC class I (MHC-I) and two MHC class IIB (MHC-IIB) duplicates, in order to test the hypothesis that haplotypes' genetic diversity is higher than expected from randomly associated alleles. After showing that MHC loci are tightly linked within classes, we found limited evidence for shifts towards MHC haplotypes combining high diversity. Neither amino acid nor functional within-haplotype diversity were significantly higher than in random sets of haplotypes, regardless of MHC class. Our results therefore provide no evidence for selection towards high-diversity MHC haplotypes in barn owls. Rather, high rates of concerted evolution may constrain the evolution of high-diversity haplotypes at MHC-I, while, in contrast, for MHC-IIB, fixed differences among loci may provide barn owls with already optimized functional diversity. This suggests that at the MHC-I and MHC-IIB respectively, different evolutionary dynamics may govern the evolution of within-haplotype diversity.


Asunto(s)
Evolución Molecular , Haplotipos , Complejo Mayor de Histocompatibilidad/genética , Alelos , Secuencia de Aminoácidos , Ligamiento Genético , Alineación de Secuencia
5.
Mol Ecol ; 25(18): 4551-63, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27480981

RESUMEN

Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.


Asunto(s)
Receptor de Melanocortina Tipo 1/genética , Caracteres Sexuales , Estrigiformes/genética , Alelos , Animales , Plumas , Femenino , Genotipo , Masculino , Suiza
6.
Mol Ecol ; 23(22): 5508-23, 2014 11.
Artículo en Inglés | MEDLINE | ID: mdl-25294501

RESUMEN

Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.


Asunto(s)
Evolución Biológica , Genética de Población , Pigmentación/genética , Selección Genética , Estrigiformes/genética , Animales , Teorema de Bayes , Simulación por Computador , Europa (Continente) , Repeticiones de Microsatélite , Modelos Biológicos , Análisis de Secuencia de ADN
7.
Ecol Evol ; 14(2): e10950, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38384825

RESUMEN

The selective pressure from pathogens on individuals can have direct consequences on reproduction. Genes from the major histocompatibility complex (MHC) are central to the vertebrate adaptive immune system and pathogen resistance. In species with biparental care, each sex has distinct reproductive roles and levels of investment, and due to a trade-off with immunity, one can expect different selective regimes acting upon the MHC of each parent. Here, we addressed whether couples combine each other's variation at MHC loci to increase their breeding success. Specifically, we used a 23-year dataset from a barn owl population (Tyto alba) to understand how MHC class Iα and IIß functional divergence and supertypes of each parent were associated with clutch size and fledging success. We did not detect associations between MHC diversity and supertypes with the clutch size or with the fledging success. In addition, to understand the relative contribution from the MHC of the genetic parents and the social parents, we analyzed the fledging success using only a cross-fostered dataset. We found several associations of weak-to-moderate effect sizes between the father's MHC and fledging success: (i) lower MHC-Iα divergence in the genetic father increases fledging success, which might improve paternal care during incubation, and (ii) one and two MHC-IIß DAB2 supertypes in the social father decrease and increase, respectively, fledging success, which may affect the paternal care after hatching. Furthermore, fledging success increased when both parents did not carry MHC-IIß DAB1 supertype 2, which could suggest conditional effects of this supertype. Although our study relied on a substantial dataset, we showed that the associations between MHC diversity and reproductive success remain scarce and of complex interpretation in the barn owl. Moreover, our results highlighted the need to incorporate more than one proxy of reproductive success and several MHC classes to capture more complex associations.

8.
Mol Ecol Resour ; 24(4): e13935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332480

RESUMEN

Using high-throughput sequencing for precise genotyping of multi-locus gene families, such as the major histocompatibility complex (MHC), remains challenging, due to the complexity of the data and difficulties in distinguishing genuine from erroneous variants. Several dedicated genotyping pipelines for data from high-throughput sequencing, such as next-generation sequencing (NGS), have been developed to tackle the ensuing risk of artificially inflated diversity. Here, we thoroughly assess three such multi-locus genotyping pipelines for NGS data, the DOC method, AmpliSAS and ACACIA, using MHC class IIß data sets of three-spined stickleback gDNA, cDNA and "artificial" plasmid samples with known allelic diversity. We show that genotyping of gDNA and plasmid samples at optimal pipeline parameters was highly accurate and reproducible across methods. However, for cDNA data, the gDNA-optimal parameter configuration yielded decreased overall genotyping precision and consistency between pipelines. Further adjustments of key clustering parameters were required tο account for higher error rates and larger variation in sequencing depth per allele, highlighting the importance of template-specific pipeline optimization for reliable genotyping of multi-locus gene families. Through accurate paired gDNA-cDNA typing and MHC-II haplotype inference, we show that MHC-II allele-specific expression levels correlate negatively with allele number across haplotypes. Lastly, sibship-assisted cDNA-typing of MHC-I revealed novel variants linked in haplotype blocks, and a higher-than-previously-reported individual MHC-I allelic diversity. In conclusion, we provide novel genotyping protocols for the three-spined stickleback MHC-I and -II genes, and evaluate the performance of popular NGS-genotyping pipelines. We also show that fine-tuned genotyping of paired gDNA-cDNA samples facilitates amplification bias-corrected MHC allele expression analysis.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Genotipo , Alelos , Técnicas de Genotipaje/métodos , ADN Complementario , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Expresión Génica , Haplotipos
9.
Sci Rep ; 13(1): 3837, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882519

RESUMEN

The major histocompatibility complex (MHC) is a multigene family responsible for pathogen detection, and initiation of adaptive immune responses. Duplication, natural selection, recombination, and their resulting high functional genetic diversity spread across several duplicated loci are the main hallmarks of the MHC. Although these features were described in several jawed vertebrate lineages, a detailed MHC IIß characterization at the population level is still lacking for chondrichthyans (chimaeras, rays and sharks), i.e. the most basal lineage to possess an MHC-based adaptive immune system. We used the small-spotted catshark (Scyliorhinus canicula, Carcharhiniformes) as a case-study species to characterize MHC IIß diversity using complementary molecular tools, including publicly available genome and transcriptome datasets, and a newly developed high-throughput Illumina sequencing protocol. We identified three MHC IIß loci within the same genomic region, all of which are expressed in different tissues. Genetic screening of the exon 2 in 41 individuals of S. canicula from a single population revealed high levels of sequence diversity, evidence for positive selection, and footprints of recombination. Moreover, the results also suggest the presence of copy number variation in MHC IIß genes. Thus, the small-spotted catshark exhibits characteristics of functional MHC IIß genes typically observed in other jawed vertebrates.


Asunto(s)
Variaciones en el Número de Copia de ADN , Tiburones , Humanos , Animales , Tiburones/genética , Exones , Cognición , Antígenos de Histocompatibilidad , Complejo Mayor de Histocompatibilidad
11.
Front Immunol ; 13: 1020601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605191

RESUMEN

Introduction: Toll like receptors (TLRs) are at the front line of pathogen recognition and host immune response. Many TLR genes have been described to date with some being found across metazoans while others are restricted to specific lineages. A cryptic member of the TLR gene family, TLR15, has a unique phylogenetic distribution. Initially described in extant species of birds and reptiles, an ortholog has been reported for cartilaginous fish. Methods: Here, we significantly expanded the evolutionary analysis of TLR15 gene evolution, taking advantage of large genomic and transcriptomic resources available from different lineages of vertebrates. Additionally, we objectively search for TLR15 in lobe-finned and ray-finned fish, as well as in cartilaginous fish and jawless vertebrates. Results and discussion: We confirm the presence of TLR15 in early branching jawed vertebrates - the cartilaginous fish, as well as in basal Sarcopterygii - in lungfish. However, within cartilaginous fish, the gene is present in Holocephalans (all three families) but not in Elasmobranchs (its sister-lineage). Holocephalans have long TLR15 protein sequences that disrupt the typical TLR structure, and some species display a pseudogene sequence due to the presence of frameshift mutations and early stop codons. Additionally, TLR15 has low expression levels in holocephalans when compared with other TLR genes. In turn, lungfish also have long TLR15 protein sequences but the protein structure is not compromised. Finally, TLR15 presents several sites under negative selection. Overall, these results suggest that TLR15 is an ancient TLR gene and is experiencing ongoing pseudogenization in early-branching vertebrates.


Asunto(s)
Aves , Vertebrados , Animales , Codón , Peces/genética , Filogenia , Vertebrados/genética , Receptores Toll-Like/genética
12.
Mol Immunol ; 128: 125-138, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33126081

RESUMEN

Cartilaginous fish (chimaeras, rays and sharks) are the most basal extant jawed vertebrates with an adaptive immune system based on the Major Histocompatibility Complex (MHC). Despite being a key taxon in the evolution of vertebrate adaptive immunity, no comprehensive characterization of MHC class II genes has been undertaken for the group. We performed extensive bioinformatic searches on a taxonomically diverse dataset of transcriptomes and genomes of cartilaginous fish targeting MHC class II sequences. Class IIα and IIß sequences were retrieved from all taxa analyzed and showed typical features of classical class II genes. Phylogenetic trees of the immunoglobulin superfamily domain showed two divergent and remarkably ancient lineages of class II genes in Selachians (sharks), originating >350 million years ago. Close linkage of lineage-specific pairs of IIα and IIß genes was found, confirming previous results, with genes from distinct lineages segregating as alleles. Nonclassical class II DM sequences were not retrieved from these data and classical class II sequences lacked the conserved residues shown to interact with DM molecules, supporting claims that the DM system arose only in the lobe-finned fish lineage leading to tetrapods. Based on our search methods, other divergent class II genes are unlikely in cartilaginous fish.


Asunto(s)
Genes MHC Clase II/genética , Tiburones/genética , Rajidae/genética , Alelos , Secuencia de Aminoácidos , Animales , Antígenos de Histocompatibilidad Clase II/genética , Filogenia
13.
Evolution ; 70(1): 140-53, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26773815

RESUMEN

Uncovering the genetic basis of phenotypic variation and the population history under which it established is key to understand the trajectories along which local adaptation evolves. Here, we investigated the genetic basis and evolutionary history of a clinal plumage color polymorphism in European barn owls (Tyto alba). Our results suggest that barn owls colonized the Western Palearctic in a ring-like manner around the Mediterranean and meet in secondary contact in Greece. Rufous coloration appears to be linked to a recently evolved nonsynonymous-derived variant of the melanocortin 1 receptor (MC1R) gene, which according to quantitative genetic analyses evolved under local adaptation during or following the colonization of Central Europe. Admixture patterns and linkage disequilibrium between the neutral genetic background and color found exclusively within the secondary contact zone suggest limited introgression at secondary contact. These results from a system reminiscent of ring species provide a striking example of how local adaptation can evolve from derived genetic variation.


Asunto(s)
Proteínas Aviares/genética , Repeticiones de Microsatélite , Pigmentación , Estrigiformes/fisiología , Adaptación Biológica , Animales , Proteínas Aviares/metabolismo , Europa (Continente) , Plumas/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA