RESUMEN
BACKGROUND: Real-world evaluation of the safety profile of vaccines after licensure is crucial to accurately characterise safety beyond clinical trials, support continued use, and thereby improve public confidence. The Sisonke study aimed to assess the safety and effectiveness of the Janssen Ad26.COV2.S vaccine among healthcare workers (HCWs) in South Africa. Here, we present the safety data. METHODS AND FINDINGS: In this open-label phase 3b implementation study among all eligible HCWs in South Africa registered in the national Electronic Vaccination Data System (EVDS), we monitored adverse events (AEs) at vaccination sites through self-reporting triggered by text messages after vaccination, healthcare provider reports, and active case finding. The frequency and incidence rate of non-serious and serious AEs were evaluated from the day of first vaccination (17 February 2021) until 28 days after the final vaccination in the study (15 June 2021). COVID-19 breakthrough infections, hospitalisations, and deaths were ascertained via linkage of the electronic vaccination register with existing national databases. Among 477,234 participants, 10,279 AEs were reported, of which 138 (1.3%) were serious AEs (SAEs) or AEs of special interest. Women reported more AEs than men (2.3% versus 1.6%). AE reports decreased with increasing age (3.2% for age 18-30 years, 2.1% for age 31-45 years, 1.8% for age 46-55 years, and 1.5% for age > 55 years). Participants with previous COVID-19 infection reported slightly more AEs (2.6% versus 2.1%). The most common reactogenicity events were headache (n = 4,923) and body aches (n = 4,483), followed by injection site pain (n = 2,767) and fever (n = 2,731), and most occurred within 48 hours of vaccination. Two cases of thrombosis with thrombocytopenia syndrome and 4 cases of Guillain-Barré Syndrome were reported post-vaccination. Most SAEs and AEs of special interest (n = 138) occurred at lower than the expected population rates. Vascular (n = 37; 39.1/100,000 person-years) and nervous system disorders (n = 31; 31.7/100,000 person-years), immune system disorders (n = 24; 24.3/100,000 person-years), and infections and infestations (n = 19; 20.1/100,000 person-years) were the most common reported SAE categories. A limitation of the study was the single-arm design, with limited routinely collected morbidity comparator data in the study setting. CONCLUSIONS: We observed similar patterns of AEs as in phase 3 trials. AEs were mostly expected reactogenicity signs and symptoms. Furthermore, most SAEs occurred below expected rates. The single-dose Ad26.COV2.S vaccine demonstrated an acceptable safety profile, supporting the continued use of this vaccine in this setting. TRIAL REGISTRATION: ClinicalTrials.gov NCT04838795; Pan African Clinical Trials Registry PACTR202102855526180.
Asunto(s)
COVID-19 , Vacunas , Ad26COVS1 , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Femenino , Personal de Salud , Humanos , Masculino , Persona de Mediana Edad , Sudáfrica/epidemiología , Adulto JovenRESUMEN
Background: The Janssen-Ad26.COV2.S vaccine is authorized for use in several countries, with more than 30 million doses administered. Mild and severe allergic adverse events following immunization (AEFI) have been reported. Objective: We sought to detail allergic reactions reported during the Sisonke phase 3B study in South Africa. Methods: A single dose of the Ad26.COV2.S vaccine was administered to 4,77,234 South African health care workers between February 17 and May 17, 2021. Monitoring of adverse events used a combination of passive reporting and active case finding. Telephonic contact was attempted for all adverse events reported as "allergy." Anaphylaxis adjudication was performed using the Brighton Collaboration and National Institute of Allergy and Infectious Disease case definitions. Results: Only 251 (0.052%) patients reported any allergic-type reaction (<1 in 2000), with 4 cases of adjudicated anaphylaxis (Brighton Collaboration level 1, n = 3) (prevalence of 8.4 per million doses). All anaphylaxis cases had a previous history of drug or vaccine-associated anaphylaxis. Cutaneous allergic reactions were the commonest nonanaphylatic reactions and included self-limiting, transient/localized rashes requiring no health care contact (n = 92) or isolated urticaria and/or angioedema (n = 70; median onset, 48 [interquartile range, 11.5-120] hours postvaccination) that necessitated health care contact (81%), antihistamine (63%), and/or systemic/topical corticosteroid (16%). All immediate (including adjudicated anaphylaxis) and most delayed AEFI (65 of 69) cases resolved completely. Conclusions: Allergic AEFI are rare following a single dose of Ad26.COV, with complete resolution in all cases of anaphylaxis. Although rare, isolated, delayed-onset urticaria and/or angioedema was the commonest allergic AEFI requiring treatment, with nearly half occurring in participants without known atopic disease.
RESUMEN
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.