Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Rev Lett ; 128(22): 228001, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714246

RESUMEN

Self- and cross-correlation dynamics of deeply supercooled liquids were recently identified using photon correlation spectroscopy on the one hand and dielectric investigations on the other. These results fueled a controversial discussion whether the "generic" response identified by photon correlation spectroscopy, or rather the nonuniversal dielectric response, reflect the liquid's structural relaxation. The present study employs physical aging and oscillatory shear rheology to directly access the structural relaxation of a nonassociating glass-forming liquid and reveals that collective equilibrium fluctuations of simple liquids and not single-particle dynamics govern their structural relaxation. The present results thus challenge recent views that the glassy response of polar supercooled liquids can generically be decomposed into a Debye-type, supramolecular response and a single-particle dynamics with the latter reflecting the "true" structural relaxation. Furthermore, the current findings underscore the pivotal role dielectric spectroscopy plays in glass science as one of the rare molecular-level reorientation techniques that senses dynamical cooperativity directly.

2.
Phys Chem Chem Phys ; 24(24): 14846-14856, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35697341

RESUMEN

The glass transitions of amorphous ices as well as of aqueous phosphoric acid solutions were reported to display very large 1H/2H isotope effects. Using dielectric spectroscopy, in both types of glassformers for equimolar protonated/deuterated mixtures an almost ideal isotope-mixing behavior rather than a bimodal relaxation is found. For the amorphous ices this finding is interpreted in terms of a glass-to-liquid rather than an orientational glass transition scenario. Based on calorimetric results revealing that major 16O/18O isotope effects are missing, the latter scenario was previously favored for the amorphous ices. Considering the dielectric results on 18O substituted amorphous ices and by comparison with corresponding results for the aqueous phosphoric acid solutions, it is argued that the present findings are compatible with the glass-to-liquid scenario. To provide additional information regarding the deeply supercooled state of 1H/2H isotopically mixed and 18O substituted glassformers, the aqueous phosphoric acid solutions are studied using shear mechanical spectroscopy as well, a technique which so far could not successfully be applied to characterize the glass transitions of the amorphous ices.

3.
J Chem Phys ; 154(15): 154501, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887920

RESUMEN

We performed rheological measurements of the typical deep eutectic solvents (DESs) glyceline, ethaline, and reline in a very broad temperature and dynamic range, extending from the low-viscosity to the high-viscosity supercooled-liquid regime. We find that the mechanical compliance spectra can be well described by the random free-energy barrier hopping model, while the dielectric spectra on the same materials involve significant contributions arising from reorientational dynamics. The temperature-dependent viscosity and structural relaxation time, revealing non-Arrhenius behavior typical for glassy freezing, are compared to the ionic dc conductivity and relaxation times determined by broadband dielectric spectroscopy. For glyceline and ethaline, we find essentially identical temperature dependences for all dynamic quantities. These findings point to a close coupling of the ionic and molecular translational and reorientational motions in these systems. However, for reline, the ionic charge transport appears decoupled from the structural and reorientational dynamics, following a fractional Walden rule. In particular, at low temperatures, the ionic conductivity in this DES is enhanced by about one decade compared to expectations based on the temperature dependence of the viscosity. The results for all three DESs can be understood without invoking a revolving-door mechanism previously considered as a possible charge-transport mechanism in DESs.

4.
J Chem Phys ; 155(1): 014505, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241375

RESUMEN

Oscillatory shear rheology has been employed to access the structural rearrangements of deeply supercooled sulfuric acid tetrahydrate (SA4H) and phosphoric acid monohydrate, the latter in protonated (PA1H) and deuterated (PA1D) forms. Their viscoelastic responses are analyzed in relation to their previously investigated electric conductivity. The comparison of the also presently reported dielectric response of deuterated sulfuric acid tetrahydrate (SA4D) and that of its protonated analog SA4H reveals an absence of isotope effects for the charge transport in this hydrate. This finding clearly contrasts with the situation known for PA1H and PA1D. Our analyses also demonstrate that the conductivity relaxation profiles of acid hydrides closely resemble those exhibited by classical ionic electrolytes, even though the charge transport in phosphoric acid hydrates is dominated by proton transfer processes. At variance with this dielectric simplicity, the viscoelastic responses of these materials depend on their structural compositions. While SA4H displays a "simple liquid"-like viscoelastic behavior, the mechanical responses of PA1H and PA1D are more complex, revealing relaxation modes, which are faster than their ubiquitous structural rearrangements. Interestingly, the characteristic rates of these fast mechanical relaxations agree well with the characteristic frequencies of the charge rearrangements probed in the dielectric investigations, suggesting appearance of a proton transfer in mechanical relaxation of phosphoric acid hydrates. These findings open the exciting perspective of exploiting shear rheology to access not only the dynamics of the matrix but also that of the charge carriers in highly viscous decoupled conductors.

5.
J Chem Phys ; 155(1): 011101, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241407

RESUMEN

The self-diffusion coefficient of viscous liquids is estimated on the basis of a simple analysis of their rheological shear spectra. To this end, the Almond-West approach, previously employed to access single-particle diffusivities in ionic conductors, is generalized for application to molecular dynamics in supercooled liquids. Rheology based estimates, presented for indomethacin, ortho-terphenyl, and trinaphthylbenzene, reveal relatively small, yet systematic differences when compared with diffusivity data directly measured for these highly viscous liquids. These deviations are discussed in terms of mechanical Haven ratios, introduced to quantify the magnitude of collective translational effects that have an impact on the viscous flow.

6.
J Chem Phys ; 155(17): 174502, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34742219

RESUMEN

Employing dielectric spectroscopy, oscillatory shear rheology, and calorimetry, the present work explores the molecular dynamics of the widely used insecticide imidacloprid above and below its glass transition temperature. In its supercooled liquid regime, the applied techniques yield good agreement regarding the characteristic structural (alpha) relaxation times of this material. In addition, the generalized Gemant-DiMarzio-Bishop model provides a good conversion between the frequency-dependent dielectric and shear mechanical responses in its viscous state, allowing for an assessment of imidacloprid's molecular hydrodynamic radius. In order to characterize the molecular dynamics in its glassy regime, we employ several approaches. These include the application of frequency-temperature superposition (FTS) to its isostructural dielectric and rheological responses as well as use of dielectric and calorimetric physical aging and the Adam-Gibbs-Vogel model. While the latter approach and dielectric FTS provide relaxation times that are close to each other, the other methods predict notably longer times that are closer to those reflecting a complete recovery of ergodicity. This seemingly conflicting dissimilarity demonstrates that the molecular dynamics of glassy imidacloprid strongly depends on its thermal history, with high relevance for the use of this insecticide as an active ingredient in technological applications.


Asunto(s)
Frío , Neonicotinoides , Nitrocompuestos , Vidrio/química , Insecticidas/química , Neonicotinoides/química , Nitrocompuestos/química , Temperatura de Transición
7.
J Chem Phys ; 153(19): 194501, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33218241

RESUMEN

Combining results from impedance spectroscopy and oscillatory shear rheology, the present work focuses on the relation between the mass and charge flows and on how these are affected by the H-bonding in viscous ionic liquids (ILs). In particular, we compare the relaxational behaviors of the paradigmatic IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) and its OH-functionalized counterpart 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (OHEMIM-TFSI). Our results and their analysis demonstrate that the presence of cationic OH-groups bears a strong impact on the overall dynamics of OHEMIM-TFSI, although no signatures of suprastructural relaxation modes could be identified in their dielectric and mechanical responses. To check whether at the origin of this strong variation is the H-bonding or merely the difference between the corresponding cation sizes (controlling both the hydrodynamic volume and the inter-charge distance), the present study includes 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (PMIM-TFSI), mixtures of EMIM-TFSI and PMIM-TFSI with lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI), and mixtures of OHEMIM-TFSI with PMIM-TFSI. Their investigation clearly reveals that the dynamical changes induced by H-bonding are significantly larger than those that can be attributed to the change in the ion size. Moreover, in the mixtures of OHEMIM-TFSI with PMIM-TFSI, a dilution of the OH-groups leads to strong deviations from ideal mixing behavior, thus highlighting the common phenomenological ground of hydroxy-functionalized ILs and other H-bonded liquids.

8.
J Chem Phys ; 151(3): 034903, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31325936

RESUMEN

Combining experimental results obtained with X-ray scattering and field-gradient nuclear magnetic resonance (NMR) and an assessment of new and previous dielectric and rheology data, our study focuses on the molecular weight (Mw) evolution of local structure and dynamics in a homologous series of covalently bonded ionic liquids. Performed on a family of electrolytes with a tailored degree of ionic decoupling, this study reveals the differences between monomeric and oligomeric melts with respect to their structural organization, mass and charge transport, and molecular diffusion. Our study demonstrates that for the monomeric compound, the broadband conductivity and mechanical spectra reflect the same underlying distribution of activation barriers and that the Random Barrier Model describes fairly well both the ionic and structural relaxation processes in these materials. Moreover, the oligomers with chains comprising ten segments only exhibit both structural and dynamical fingerprints of a genuine polymer. A comparison of conductivity levels estimated using the self-diffusion coefficients probed via NMR and those probed directly with dielectric spectroscopy reveals the emerging of ion correlations which are affecting the macroscopic charge transport in these materials in a chain-length dependent manner.

9.
J Chem Phys ; 150(24): 244501, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31255070

RESUMEN

This work reports on frequency dependent ambient-pressure dielectric measurements of hyperquenched glassy water, ice IV, ice VI, as well as a CO2-filled clathrate hydrate, the latter featuring a chiral water network. The dipolar time scales and the spectral shapes of the loss spectra of these specimens are mapped out and compared with literature data on low-density and high-density amorphous ices as well as on amorphous solid water. There is a trend that the responses of the more highly dense amorphous ices are slightly more dynamically heterogeneous than those of the lower-density amorphous ices. Furthermore, practically all of the amorphous ices, for which broadband dielectric spectra are available, display a curved high-frequency wing. Conversely, the high-frequency flanks of the nominally pure ice crystals including ice V and ice XII can be characterized by an approximate power-law behavior. While the spectral shapes of the nominally pure ices thus yield some hints regarding their amorphicity or crystallinity, a comparison of their time scale appears less distinctive in this respect. In the accessible temperature range, the relaxation times of the crystalline ices are between those of low-density and high-density amorphous ice. Hence, with reference also to previous work, the application of suitable doping currently seems to be the best dielectric spectroscopy approach to distinguish amorphous from crystalline ices.

10.
Phys Chem Chem Phys ; 20(3): 1716-1723, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29265133

RESUMEN

Glycerol-water mixtures were studied at molar concentrations ranging from xgly = 1 (neat glycerol) to xgly = 0.3 using shear mechanical spectroscopy. We observed a low frequency mode in neat glycerol, similar to what has been reported for monohydroxy alcohols. This mode has no dielectric counterpart and disappears with increased water concentration. We propose that the hydrogen-bonded network formed between glycerol molecules is responsible for the observed slow mode and that water acts as a plasticizer for the overall dynamics and as a lubricant softening the hydrogen-bonding contribution to the macroscopic viscosity of this binary system.

11.
J Chem Phys ; 148(22): 221102, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29907066

RESUMEN

Monohydroxy alcohols with a large supramolecular Debye-type dielectric process often exhibit a significant decoupling between the Debye mode and the structural relaxation. Using shear rheology, a technique that is sensitive to both processes as well, the current work reveals a widely applicable correlation in terms of the dynamical onset and the viscosity enhancement of the supramolecular shear mode with respect to the structural relaxation. Rheological data from an array of about 50 oligomers, associating polymers, (polymerized) ionic liquids, and aqueous solutions corroborate this correlation which thus appears to be generic to many classes of complex fluids.

12.
J Chem Phys ; 148(13): 134502, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626891

RESUMEN

Using various temperature-cycling protocols, the dynamics of ice I were studied via dielectric spectroscopy and nuclear magnetic resonance relaxometry on protonated and deuterated samples obtained by heating high-density amorphous ices as well as crystalline ice XII. Previous structural studies of ice I established that at temperatures of about 230 K, the stacking disorder of the cubic/hexagonal oxygen lattice vanishes. The present dielectric and nuclear magnetic resonance investigations of spectral changes disclose that the memory of the existence of a precursor phase is preserved in the hydrogen matrix up to 270 K. This finding of hydrogen mobility lower than that of the undoped hexagonal ice near the melting point highlights the importance of dynamical investigations of the transitions between various ice phases and sheds new light on the dynamics in ice I in general.

13.
J Chem Phys ; 146(10): 101101, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28298116

RESUMEN

Highly unusual linear-response spectra involving contributions from hydrogen-bonded supramolecular processes and from structural relaxations are found in 4-methyl-3-heptanol mixed with 2-ethyl-1-hexylbromide. Although the mean time scales of the underlying relaxations are separated by more than 3 decades, the overall spectra cannot be decomposed into a sum of these processes. This finding challenges the ubiquitous practice of disentangling susceptibility spectra of Debye liquids by adding suitable subspectra. The spectral shape of the studied viscous mixtures is excellently described using the Williams ansatz, here a necessary approach and not as previously considered merely an alternative to additive analyses.

14.
J Chem Phys ; 147(23): 234501, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29272922

RESUMEN

The monohydroxy alcohol 2-ethyl-1-hexanol mixed with the halogen-substituted alkyl halides 2-ethyl-1-hexyl chloride and 2-ethyl-1-hexyl bromide was studied using synchrotron-based x-ray scattering. In the diffraction patterns, an oxygen-related prepeak appears. The concentration dependence of its intensity, shape, and position indicates that the formation of the hydrogen-bonded associates of monohydroxy alcohols is largely hindered by the halogen alkane admixture. Using dielectric spectroscopy and high-resolution rheology on the same liquid mixtures, it is shown that these structural features are correlated with the relaxation mechanisms giving rise to supramolecular low-frequency dynamics.

15.
Phys Rev Lett ; 117(15): 156001, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768354

RESUMEN

Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. Our detailed experimental studies discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. These results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

16.
Phys Rev Lett ; 112(9): 098301, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24655283

RESUMEN

Liquids composed of small-molecule monohydroxy alcohols are demonstrated to display rheological behavior typical for oligomeric chains. This observation was made possible by rheological experiments in which more than seven decades in frequency and more than five decades on the mechanical modulus scale are covered. The singly hydrogen-bonded monohydroxy alcohols were chosen because they display significant, but surprisingly poorly understood effects of intermolecular association. Based on the present shear study, one can apply theoretical concepts of polymer science to understand the anomalous physical behavior of a wide range of hydrogen-bonded liquids.


Asunto(s)
Heptanol/química , Hexanoles/química , Módulo de Elasticidad , Enlace de Hidrógeno , Modelos Moleculares , Reología/métodos , Viscosidad
17.
J Chem Phys ; 140(12): 124501, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24697453

RESUMEN

Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.


Asunto(s)
1-Propanol/química , Espectroscopía Dieléctrica , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja Corta
18.
Phys Chem Chem Phys ; 15(17): 6355-67, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23525408

RESUMEN

Using deuteron nuclear magnetic resonance and dielectric spectroscopy KOH doped tetrahydrofuran clathrate hydrates and KOH doped hexagonal ice are studied at temperatures above 60 and 72 K, respectively. Below these temperatures proton order is established on the lattice formed by the water molecules. In the clathrate hydrate a new type of small-angle motion is discovered using deuteron spin-spin relaxation, line-shape analysis, and stimulated-echo experiments. Based on the latter results a model is developed for the local proton motion that could successfully be tested using random-walk simulations. It is argued that the newly identified small-angle motion, obviously absent in undoped samples, is an important feature of the mechanism which accompanies the establishment of proton order not only in doped clathrate hydrates but also in doped hexagonal ice. Specific motions of OH(-) defects are demonstrated to explain the experimentally observed behavior. The relative importance of localized versus delocalized OH(-) defect motions is discussed.


Asunto(s)
Furanos/química , Hidróxidos/química , Hielo , Compuestos de Potasio/química , Agua/química , Modelos Moleculares , Temperatura
19.
J Chem Phys ; 139(6): 064501, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23947865

RESUMEN

4-methyl-3-heptanol, a monohydroxy alcohol with a relatively small dielectric Debye process, is studied in wide ranges of temperature (143 K < T < 308 K) and pressure (0.1 MPa < p < 864 MPa). When monitored under isochronous conditions, i.e., focusing on constant relaxation times, as well as under isothermal conditions, the Debye process gains significant intensity upon pressure application. This behavior contrasts with that of the previously studied octanol 2-ethyl-1-hexanol, which features a large Debye process. These experimentally observed, clearly distinguishable pressure evolutions are discussed to reflect differences in the formation of hydrogen-bonded supramolecular structures.

20.
J Chem Phys ; 138(9): 094505, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23485311

RESUMEN

A previous dielectric, near-infrared (NIR), and nuclear magnetic resonance study on the hydrogen-bonded liquid 2-ethyl-1-hexanol [C. Gainaru et al., Phys. Rev. Lett. 107, 118304 (2011)] revealed anomalous behavior in various static quantities near 250 K. To check whether corresponding observations can be made for other monohydroxy alcohols as well, these experimental methods were applied to such substances with 5, 6, 7, 8, and 10 carbon atoms in their molecular backbone. All studied liquids exhibit a change of behavior near 250 K, which is tentatively ascribed to effects of hydrogen bond cooperativity. By analyzing the NIR band intensities, a linear cluster size is derived that agrees with estimates from dielectric spectroscopy. All studied alcohols, except 4-methyl-3-heptanol, display a dominant Debye-like peak. Furthermore, neat 2-ethyl-1-butanol exhibits a well resolved structural relaxation in its dielectric loss spectrum, which so far has only been observed for diluted monohydroxy alcohols.


Asunto(s)
Alcoholes/química , Temperatura , Vidrio/química , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA