Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(12): 7436-7453, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36897048

RESUMEN

As a regressive neurodevelopmental disorder with a well-established genetic cause, Rett syndrome and its Mecp2 loss-of-function mouse model provide an excellent opportunity to define potentially translatable functional signatures of disease progression, as well as offer insight into the role of Mecp2 in functional circuit development. Thus, we applied widefield optical fluorescence imaging to assess mesoscale calcium functional connectivity (FC) in the Mecp2 cortex both at postnatal day (P)35 in development and during the disease-related decline. We found that FC between numerous cortical regions was disrupted in Mecp2 mutant males both in juvenile development and early adulthood. Female Mecp2 mice displayed an increase in homotopic contralateral FC in the motor cortex at P35 but not in adulthood, where instead more posterior parietal regions were implicated. An increase in the amplitude of connection strength, both with more positive correlations and more negative anticorrelations, was observed across the male cortex in numerous functional regions. Widespread rescue of MeCP2 protein in GABAergic neurons rescued none of these functional deficits, nor, surprisingly, the expected male lifespan. Altogether, the female results identify early signs of disease progression, while the results in males indicate MeCP2 protein is required for typical FC in the brain.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Masculino , Femenino , Ratones , Animales , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Encéfalo , Neuronas GABAérgicas/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Cereb Cortex ; 32(8): 1593-1607, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541601

RESUMEN

Temporal correlation analysis of spontaneous brain activity (e.g., Pearson "functional connectivity," FC) has provided insights into the functional organization of the human brain. However, bivariate analysis techniques such as this are often susceptible to confounding physiological processes (e.g., sleep, Mayer-waves, breathing, motion), which makes it difficult to accurately map connectivity in health and disease as these physiological processes affect FC. In contrast, a multivariate approach to imputing individual neural networks from spontaneous neuroimaging data could be influential to our conceptual understanding of FC and provide performance advantages. Therefore, we analyzed neural calcium imaging data from Thy1-GCaMP6f mice while either awake, asleep, anesthetized, during low and high bouts of motion, or before and after photothrombotic stroke. A linear support vector regression approach was used to determine the optimal weights for integrating the signals from the remaining pixels to accurately predict neural activity in a region of interest (ROI). The resultant weight maps for each ROI were interpreted as multivariate functional connectivity (MFC), resembled anatomical connectivity, and demonstrated a sparser set of strong focused positive connections than traditional FC. While global variations in data have large effects on standard correlation FC analysis, the MFC mapping methods were mostly impervious. Lastly, MFC analysis provided a more powerful connectivity deficit detection following stroke compared to traditional FC.


Asunto(s)
Mapeo Encefálico , Accidente Cerebrovascular , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Vigilia
3.
Front Cell Neurosci ; 17: 1272391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077948

RESUMEN

Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to WT and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. An increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two was unchanged. However, at 100% readthrough, AQP4x localization and the formation of higher order complexes were disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for an increased proportion of endothelial cells with budding vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

4.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546949

RESUMEN

Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to wildtype, and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. Increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two were unchanged. However, at 100% readthrough, AQP4x localization and formation of higher-order complexes was disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for increased endothelial cell vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA