Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chemistry ; 30(22): e202400004, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38361470

RESUMEN

Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i. e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement.

2.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163680

RESUMEN

Despite the continuous developments in pharmacology and the high therapeutic effect of new treatment options for patients with hematological malignancies, these diseases remain a major health issue. Our study aimed to synthesize, analyze in silico, and determine the biological properties of new melphalan derivatives. We obtained three methyl esters of melphalan having in their structures amidine moieties substituted with thiomorpholine (EM-T-MEL), indoline (EM-I-MEL), or 4-(4-morpholinyl) piperidine (EM-MORPIP-MEL). These have not yet been described in the literature. The in vitro anticancer properties of the analogs were determined against THP1, HL60, and RPMI8226 cells. Melphalan derivatives were evaluated for cytotoxicity (resazurin viability assay), genotoxicity (alkaline comet assay), and their ability to induce apoptosis (Hoechst33342/propidium iodide double staining method; phosphatidylserine translocation; and caspase 3/7, 8, and 9 activity measurements). Changes in mitochondrial membrane potential were examined using the specific fluorescence probe JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol carbocyanine). The EM-T-MEL derivative had the highest biological activity, showing higher cytotoxic and genotoxic properties than the parent drug. Moreover, it showed a high ability to induce apoptosis in the tested cancer cells. This compound also had a beneficial effect in peripheral blood mononuclear cells (PBMC). In conclusion, we verified and confirmed the hypothesis that chemical modifications of the melphalan structure improved its anticancer properties. The conducted study allowed the selection of the compound with the highest biological activity and provided a basis for chemical structure-biological activity analyses.


Asunto(s)
Neoplasias Hematológicas/tratamiento farmacológico , Melfalán/análogos & derivados , Melfalán/síntesis química , Melfalán/uso terapéutico , Apoptosis , Caspasas/metabolismo , Línea Celular Tumoral , Fragmentación del ADN , Neoplasias Hematológicas/patología , Humanos , Leucemia/tratamiento farmacológico , Leucemia/patología , Melfalán/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Biológicos , Coloración y Etiquetado
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638899

RESUMEN

This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2',7'-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Metformina/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Daño del ADN , Sinergismo Farmacológico , Femenino , Humanos , Hipoglucemiantes/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatidilserinas/metabolismo
4.
Bioorg Med Chem Lett ; 30(4): 126904, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31882294

RESUMEN

(1-4)-Thiodisaccharides, thiosugars with the 1-4-thio bridge, were recently shown to induce oxidative stress, as well as, apoptosis in cancer cells in the low micromolar range; however, the detailed mechanism of their anticancer action still remains unknown. In order to clarify the mechanism of (1-4)- thiodisaccharides action, we performed a series of tests including cytotoxic, clonogenic and apoptosis assays using an in vitro glioma cancer model with one ATCC cell line U87 and two novel glioma cell lines derived from cancer patients - H6PX and H7PX. We also evaluated the ability of (1-4)-thiodisaccharides to interfere with protein folding and synthesis processes, as well as, the thioredoxin system. (1-4)-thiodisaccharides induced glioma cell death, which were found to be accompanied with endoplasmic reticulum stress, inhibition of global protein synthesis, reduced overall cellular thiol level and thioredoxin reductase activity. We also performed a RT-PCR and Elisa analysis of (1-4)-thiodisaccharides-treated glioma cells to identify any changes within the pathway affected by (1-4)-thiodisaccharides. We observed a significant increase of expression in key markers of endoplasmic reticulum stress and pro-apoptotic protein, FASLG. We proposed that (1-4)-thiodisaccharides react with cellular thiols and disturb any cellular thiol-depended processes like thioredoxin system or protein folding.


Asunto(s)
Antineoplásicos/química , Tioazúcares/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tioazúcares/metabolismo , Tioazúcares/farmacología
5.
Bioorg Chem ; 95: 103504, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31864904

RESUMEN

In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.


Asunto(s)
Antineoplásicos/farmacología , Dendrímeros/farmacología , Técnicas de Transferencia de Gen , Lisina/farmacología , Péptidos/farmacología , Plásmidos/genética , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN , Dendrímeros/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Lisina/química , Estructura Molecular , Péptidos/química , Relación Estructura-Actividad , Transfección
6.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352723

RESUMEN

Poly (ADP-ribose) polymerase inhibitor (PARPi, olaparib) impairs the repair of DNA single-strand breaks (SSBs), resulting in double-strand breaks (DSBs) that cannot be repaired efficiently in homologous recombination repair (HRR)-deficient cancers such as BRCA1/2-mutant cancers, leading to synthetic lethality. Despite the efficacy of olaparib in the treatment of BRCA1/2 deficient tumors, PARPi resistance is common. We hypothesized that the combination of olaparib with anticancer agents that disrupt HRR by targeting ataxia telangiectasia and Rad3-related protein (ATR) or checkpoint kinase 1 (CHK1) may be an effective strategy to reverse ovarian cancer resistance to olaparib. Here, we evaluated the effect of olaparib, the ATR inhibitor AZD6738, and the CHK1 inhibitor MK8776 alone and in combination on cell survival, colony formation, replication stress response (RSR) protein expression, DNA damage, and apoptotic changes in BRCA2 mutated (PEO-1) and HRR-proficient BRCA wild-type (SKOV-3 and OV-90) cells. Combined treatment caused the accumulation of DNA DSBs. PARP expression was associated with sensitivity to olaparib or inhibitors of RSR. Synergistic effects were weaker when olaparib was combined with CHK1i and occurred regardless of the BRCA2 status of tumor cells. Because PARPi increases the reliance on ATR/CHK1 for genome stability, the combination of PARPi with ATR inhibition suppressed ovarian cancer cell growth independently of the efficacy of HRR. The present results were obtained at sub-lethal doses, suggesting the potential of these inhibitors as monotherapy as well as in combination with olaparib.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Cistadenocarcinoma Seroso/patología , Recombinación Homóloga , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Interferente Pequeño/genética , Transducción de Señal
7.
Biochim Biophys Acta ; 1838(3): 882-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24316171

RESUMEN

We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation.


Asunto(s)
Dendrímeros/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Hemólisis/efectos de los fármacos , Silanos/química , Cationes/química , Proliferación Celular , Dendrímeros/farmacología , Eritrocitos/efectos de los fármacos , Humanos , ARN Interferente Pequeño/genética , Silanos/farmacología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
8.
Transfus Med Hemother ; 42(3): 140-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26195927

RESUMEN

BACKGROUND: To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. METHODS: The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. RESULTS: Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. CONCLUSION: Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving.

9.
Contemp Oncol (Pozn) ; 19(5): 350-3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793017

RESUMEN

Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer.

10.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786089

RESUMEN

Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFßR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFß1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA2 , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs , Neoplasias Ováricas , Ftalazinas , Piperazinas , ARN Mensajero , Humanos , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Piperazinas/farmacología , Piperazinas/uso terapéutico , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Redes Reguladoras de Genes/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Cell Biol Int ; 37(12): 1330-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23955989

RESUMEN

We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Epotilonas/farmacología , Ovario/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Femenino , Ratones , Microscopía Fluorescente , Ovario/citología , Paclitaxel/toxicidad , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
12.
Cells ; 12(7)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048111

RESUMEN

The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2MUT PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteína BRCA2/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
13.
Sci Rep ; 13(1): 22659, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114660

RESUMEN

Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Antineoplásicos/farmacología , Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
14.
Cells ; 11(12)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741017

RESUMEN

Olaparib is a poly (ADP-ribose) polymerase inhibitor (PARPi) that inhibits PARP1/2, leading to replication-induced DNA damage that requires homologous recombination repair. Olaparib is often insufficient to treat BRCA-mutated (BRCAMUT) and BRCA wild-type (BRCAWT) high-grade serous ovarian carcinomas (HGSOCs). We examined the short-term (up to 48 h) efficacy of PARPi treatment on a DNA damage response pathway mediated by ATR and CHK1 kinases in BRCAMUT (PEO-1) and BRCAWT (SKOV-3 and OV-90) cells. The combination of ATRi/CHK1i with PARPi was not more cytotoxic than ATR and CHK1 monotherapy. The combination of olaparib with inhibitors of the ATR/CHK1 pathway generated chromosomal abnormalities, independent on BRCAMUT status of cells and formed of micronuclei (MN). However, the beneficial effect of the PARPi:ATRi combination on MN was seen only in the PEO1 BRCAMUT line. Monotherapy with ATR/CHK1 inhibitors reduced BrdU incorporation due to a slower rate of DNA synthesis, which resulted from elevated levels of replication stress, while simultaneous blockade of PARP and ATR caused beneficial effects only in OV-90 cells. Inhibition of ATR/CHK1 increased the formation of double-strand breaks as measured by increased γH2AX expression at collapsed replication forks, resulting in increased levels of apoptosis. Our findings indicate that ATR and CHK1 inhibitors provoke premature mitotic entry, leading to genomic instability and ultimately cell death.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma Epitelial de Ovario , Femenino , Inestabilidad Genómica , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
15.
Cancers (Basel) ; 13(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072593

RESUMEN

Genomic alterations and aberrant DNA damage signaling are hallmarks of ovarian cancer (OC), the leading cause of mortality among gynecological cancers worldwide. Owing to the lack of specific symptoms and late-stage diagnosis, survival chances of patients are significantly reduced. Poly (ADP-ribose) polymerase (PARP) inhibitors and replication stress response inhibitors present attractive therapeutic strategies for OC. Recent research has focused on ovarian cancer-associated microRNAs (miRNAs) that play significant regulatory roles in various cellular processes. While miRNAs have been shown to participate in regulation of tumorigenesis and drug responses through modulating the DNA damage response (DDR), little is known about their potential influence on sensitivity to chemotherapy. The main objective of this review is to summarize recent findings on the utility of miRNAs as cancer biomarkers, in particular, ovarian cancer, and their regulation of DDR or modified replication stress response proteins. We further discuss the suppressive and promotional effects of various miRNAs on ovarian cancer and their participation in cell cycle disturbance, response to DNA damage, and therapeutic functions in multiple cancer types, with particular focus on ovarian cancer. Improved understanding of the mechanisms by which miRNAs regulate drug resistance should facilitate the development of effective combination therapies for ovarian cancer.

16.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188633, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619333

RESUMEN

Ovarian cancer (OC) constitutes the most common cause of gynecologic cancer-related death in women worldwide. Despite consistent developments in treatment strategies for OC, the management of advanced-stage disease remains a significant challenge. Recent improvements in targeted treatments based on poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) have provided invaluable benefits to patients with OC. Unfortunately, numerous patients do not respond to PARPi due to intrinsic resistance or acquisition of resistance. Here, we discuss mechanisms of resistance to PARPi that have specifically emerged in OC including increased drug efflux, restoration of HR repair, re-establishment of replication fork stability, reduced PARP1 trapping, abnormalities in PARP signaling, and less common pathways associated with alternative DNA sensing and repair pathways. Elucidation of the precise mechanisms is essential for the development of novel strategies to re-sensitize OC cells to PARPi agents. Additionally, novel potential concepts for preventing and combating resistance to PARPi under development and relevant clinical reports on treatment strategies have been reviewed, with emphasis on the exploitation of the ATR/CHK1 kinase pathway in sensitization to PARPi to overcome resistance-induced vulnerability in ovarian cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
17.
J Hematol Oncol ; 13(1): 39, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316968

RESUMEN

Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Reparación del ADN/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Terapia Molecular Dirigida , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología
18.
Sci Rep ; 10(1): 4479, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161295

RESUMEN

Chemical modification of known, effective drugs is one method to improve chemotherapy. Thus, the object of this study was to generate melphalan derivatives with improved cytotoxic activity in human cancer cells (RPMI8226, HL60 and THP1). Several melphalan derivatives were synthesised, modified in their two important functional groups. Nine analogues were tested, including melphalan compounds modified: only at the amino group, by replacing the amine with an amidine group containing a morpholine ring (MOR-MEL) or with an amidino group and dipropyl chain (DIPR-MEL); only at the carboxyl group to form methyl and ethyl esters of melphalan (EM-MEL, EE-MEL); and in a similar manner at both functional groups (EM-MOR-MEL, EE-MOR-MEL, EM-DIPR-MEL, EE-DIPR-MEL). Melphalan derivatives were evaluated for cytotoxicity (resazurin viability assay), genotoxicity (comet assay) and the ability to induce apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelling, TUNEL, phosphatidylserine externalisation, chromatin condensation, activity of caspases 3/7, 8 and 9 and intracellular concentration of calcium ions) in comparison with the parent drug. Almost all derivatives, with the exception of MOR-MEL and DIPR-MEL, were found to be more toxic than melphalan in all cell lines evaluated. Treatment of cultures with the derivatives generated a significant higher level of DNA breaks compared to those treated with melphalan, especially after longer incubation times. In addition, all the melphalan derivatives demonstrated a high apoptosis-inducing ability in acute monocytic and promyelocytic leukemia cells. This study showed that the mechanism of action of the tested compounds differed depending on the cell line, and allowed the selection of the most active compounds for further, more detailed investigations.


Asunto(s)
Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacología , Melfalán/química , Melfalán/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Caspasas/metabolismo , Supervivencia Celular , Daño del ADN/efectos de los fármacos , Desarrollo de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Melfalán/análogos & derivados , Melfalán/uso terapéutico , Estructura Molecular , Fosfatidilserinas
19.
Phytomedicine ; 61: 152847, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31029905

RESUMEN

BACKGROUND: Epothilones are microtubule-targeting agents that induce death in a variety of cancer cell types. Here, we focus on the cellular and molecular mechanisms underlying epothilone A (Epo A) and epothilone B (Epo B)-induced autophagy and apoptosis in ovarian cancer cells, compared to the actions of the widely used clinical chemotherapy drug paclitaxel (PTX). MATERIALS AND METHODS: Autophagy was examined in two cell lines, SKOV-3 (human ovarian adenocarcinoma) and OV-90 (human ovarian papillary serous adenocarcinoma), which differ in the levels of p-glycoprotein and drug resistance, based on the LC3 ELISA assay, fluorescence detection of autophagosome formation, morphological changes evaluated via acridine orange staining, and visualization of LC3 protein using confocal microscopy. Cell viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Apoptosis was measured via the caspase-3/7 assay and immunofluorescence labeling of caspase-3. Differences in microtubule organization in epothilone-treated cells were investigated using specific antibodies against ß-tubulin. All probes were analyzed both in the presence and absence of the autophagy inhibitor, bafilomycin A1 (Baf), and apoptosis inhibitor, Z-FA-FMK. RESULTS: Epothilone and PTX treatment induced a dose-dependent decrease in cell viability, along with increased apoptosis and disruption of microtubule dynamics. Furthermore, under conditions of inhibition of autophagy with Baf, apoptosis triggered by these compounds was significantly increased. CONCLUSION: Our collective results suggest that treatment with epothilones in combination with autophagy inhibitors present a potentially more effective chemotherapeutic approach for ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Epotilonas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Macrólidos/farmacología , Microtúbulos/efectos de los fármacos , Neoplasias Ováricas/patología , Paclitaxel/farmacología
20.
Toxicol In Vitro ; 55: 140-150, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30579959

RESUMEN

In the study, the cytotoxicity and genotoxicity of aclarubicin (ACL) against A549 (human non-small cell lung adenocarcinoma) and HepG2 (human hepatocellular carcinoma) cell lines were evaluated and compared with that of doxorubicin (DOX). The effect of both anthracyclines in combination was also investigated. In order to get a deeper insight into the effectiveness of the drugs and their combination, their effects on the DNA damage and distribution of the cell cycle of A549 and HepG2 cells were investigated. After treatment with investigated compounds, apoptotic and necrotic morphological changes were estimated by double staining cells with orange acridine and ethidium bromide. The results showed that ACL was much more cytotoxic against lung (A549) and liver (HepG2) cancer cell lines than DOX. However, the drugs affected the cell cycle differently. ACL arrested cells in the G1 phase, while DOX arrested them in the G2/M phase. DOX and ACL at high concentrations are able to trigger apoptosis in both A549 and HepG2 cells. When the drugs were used in combination, subtoxic concentrations of ACL antagonized the cytotoxic effects of doxorubicin. Pre-incubation of cells with subtoxic concentrations of ACL reduced the level of DNA damage by DOX but increased DOX genotoxicity in the presence of verapamil.


Asunto(s)
Aclarubicina/farmacología , Antibióticos Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Células A549 , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA