Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2311703121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315863

RESUMEN

Global polls have shown that people in high-income countries generally report being more satisfied with their lives than people in low-income countries. The persistence of this correlation, and its similarity to correlations between income and life satisfaction within countries, could lead to the impression that high levels of life satisfaction can only be achieved in wealthy societies. However, global polls have typically overlooked small-scale, nonindustrialized societies, which can provide an alternative test of the consistency of this relationship. Here, we present results from a survey of 2,966 members of Indigenous Peoples and local communities among 19 globally distributed sites. We find that high average levels of life satisfaction, comparable to those of wealthy countries, are reported for numerous populations that have very low monetary incomes. Our results are consistent with the notion that human societies can support very satisfying lives for their members without necessarily requiring high degrees of monetary wealth.


Asunto(s)
Renta , Satisfacción Personal , Humanos , Pobreza , Sociedades , Problemas Sociales
2.
Nat Commun ; 15(1): 6943, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138161

RESUMEN

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr-1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.


Asunto(s)
Archaea , Bacterias , Biomasa , Cambio Climático , Procesos Heterotróficos , Océanos y Mares , Archaea/metabolismo , Bacterias/metabolismo , Agua de Mar/microbiología , Cadena Alimentaria , Animales , Zooplancton/metabolismo , Carbono/metabolismo , Peces , Células Procariotas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA