RESUMEN
BACKGROUND: Stereotactic ablative radiotherapy (SABR) is emerging as a potential local treatment option for oligometastatic RCC. This study aims to evaluate the efficacy of SABR in patients with oligorecurrent RCC. METHODS: A total of 50 patients with histologically confirmed RCC underwent SABR for oligorecurrence between 2006 and 2022. Eligible patients had up to five extracranial metastases and were systemic treatment-naïve at the time of irradiation. The primary endpoints of the analysis were overall survival (OS), local control (LC), distant metastasis-free survival (DMFS), and time to systemic therapy initiation. RESULTS: The median OS was not reached, with 1- and 3-year OS rates of 93.8% and 77.5%, respectively. LC rates at one and three years were 95.8% and 86.5%, respectively. The median time to systemic therapy initiation was 63.8 months, and the median DMFS was 17.9 months, with one- and three-year rates of 63.4% and 36.6%, respectively. Multiple metastases were a negative predictive factor for DMFS (HR 2.39, p = 0.023), whereas lung metastases were associated with a more favorable outcome (HR 0.38, p = 0.011). CONCLUSIONS: SABR offers a valuable treatment option for oligometastatic RCC, demonstrating significant potential for achieving long-term disease control and delaying the need for systemic therapy.
RESUMEN
BACKGROUND: Total marrow (lymphoid) irradiation (TMI/TMLI) is a radiotherapy treatment used to selectively target the bone marrow and lymph nodes in conditioning regimens for allogeneic hematopoietic stem cell transplantation. A complex field geometry is needed to cover the large planning target volume (PTV) of TMI/TMLI with volumetric modulated arc therapy (VMAT). Five isocenters and ten overlapping fields are needed for the upper body, while, for patients with large anatomical conformation, two specific isocenters are placed on the arms. The creation of a field geometry is clinically challenging and is performed by a medical physicist (MP) specialized in TMI/TMLI. PURPOSE: To develop convolutional neural networks (CNNs) for automatically generating the field geometry of TMI/TMLI. METHODS: The dataset comprised 117 patients treated with TMI/TMLI between 2011 and 2023 at our Institute. The CNN input image consisted of three channels, obtained by projecting along the sagittal plane: (1) average CT pixel intensity within the PTV; (2) PTV mask; (3) brain, lungs, liver, bowel, and bladder masks. This "averaged" frontal view combined the information analyzed by the MP when setting the field geometry in the treatment planning system (TPS). Two CNNs were trained to predict the isocenters coordinates and jaws apertures for patients with (CNN-1) and without (CNN-2) isocenters on the arms. Local optimization methods were used to refine the models output based on the anatomy of the patient. Model evaluation was performed on a test set of 15 patients in two ways: (1) by computing the root mean squared error (RMSE) between the CNN output and ground truth; (2) with a qualitative assessment of manual and generated field geometries-scale: 1 = not adequate, 4 = adequate-carried out in blind mode by three MPs with different expertise in TMI/TMLI. The Wilcoxon signed-rank test was used to evaluate the independence of the given scores between manual and generated configurations (p < 0.05 significant). RESULTS: The average and standard deviation values of RMSE for CNN-1 and CNN-2 before/after local optimization were 15 ± 2/13 ± 3 mm and 16 ± 2/18 ± 4 mm, respectively. The CNNs were integrated into a planning automation software for TMI/TMLI such that the MPs could analyze in detail the proposed field geometries directly in the TPS. The selection of the CNN model to create the field geometry was based on the PTV width to approximate the decision process of an experienced MP and provide a single option of field configuration. We found no significant differences between the manual and generated field geometries for any MP, with median values of 4 versus 4 (p = 0.92), 3 versus 3 (p = 0.78), 4 versus 3 (p = 0.48), respectively. Starting from October 2023, the generated field geometry has been introduced in our clinical practice for prospective patients. CONCLUSIONS: The generated field geometries were clinically acceptable and adequate, even for an MP with high level of expertise in TMI/TMLI. Incorporating the knowledge of the MPs into the development cycle was crucial for optimizing the models, especially in this scenario with limited data.
Asunto(s)
Médula Ósea , Aprendizaje Profundo , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Radioterapia de Intensidad Modulada/métodos , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Médula Ósea/efectos de la radiación , Dosificación RadioterapéuticaRESUMEN
BACKGROUND: Radiotherapy is essential in the management of head-neck cancer. During the course of radiotherapy, patients may develop significant anatomical changes. Re-planning with adaptive radiotherapy may ensure adequate dose coverage and sparing of organs at risk. We investigated the consequences of adaptive radiotherapy on head-neck cancer patients treated with volumetric-modulated arc radiation therapy compared to simulated non-adaptive plans: Materials and methods: We included in this retrospective dosimetric analysis 56 patients treated with adaptive radiotherapy. The primary aim of the study was to analyze the dosimetric differences with and without an adaptive approach for targets and organs at risk, particularly the spinal cord, parotid glands, oral cavity and larynx. The original plan (OPLAN) was compared to the adaptive plan (APLAN) and to a simulated non-adaptive dosimetric plan (DPLAN). RESULTS: The non-adaptive DPLAN, when compared to OPLAN, showed an increased dose to all organs at risk. Spinal cord D2 increased from 27.91 (21.06-31.76) Gy to 31.39 (27.66-38.79) Gy (p = 0.00). V15, V30 and V45 of the DPLAN vs. the OPLAN increased by 20.6% (p = 0.00), 14.78% (p = 0.00) and 15.55% (p = 0.00) for right parotid; and 16.25% (p = 0.00), 18.7% (p = 0.00) and 20.19% (p = 0.00) for left parotid. A difference of 36.95% was observed in the oral cavity V40 (p = 0.00). Dose coverage was significantly reduced for both CTV (97.90% vs. 99.96%; p = 0.00) and PTV (94.70% vs. 98.72%; p = 0.00). The APLAN compared to the OPLAN had similar values for all organs at risk. CONCLUSIONS: The adaptive strategy with re-planning is able to avoid an increase in dose to organs at risk and better target coverage in head-neck cancer patients, with potential benefits in terms of side effects and disease control.
Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/etiología , Radioterapia de Intensidad Modulada/efectos adversosRESUMEN
BACKGROUND: Delivering stereotactic ablative radiotherapy (SABR) in patients with multiple oligometastases represents a challenge for clinical and technical reasons. We aimed to evaluate the outcome of patients affected by multiple oligometastases treated with SABR and the impact of tumor volume on survival. MATERIALS AND METHODS: We included all the patients treated with single course SABR for 3 to 5 extracranial oligometastases. All patients were treated with the volumetric modulated arc therapy (VMAT) technique with ablative intent. End-points of the analysis were overall survival (OS), progression free survival (PFS), local control (LC) and toxicity. RESULTS: 136 patients were treated from 2012 to 2020 on 451 oligometastases. Most common primary tumor was colorectal cancer (44.1%) followed by lung cancer (11.8%). A total of 3, 4 and 5 lesions were simultaneously treated in 102 (75.0%), 26 (19.1%), and 8 (5.9%) patients, respectively. Median total tumor volume (TTV) was 19.1 cc (range 0.6-245.1). With a median follow-up of 25.0 months, OS at 1 and 3 years was 88.4% and 50.2%, respectively. Increasing TTV was independent predictive factor of worse OS (HR 2.37, 95% CI 1.18-4.78, p = 0.014) and PFS (HR 1.63, 95% CI 1.05-2.54; p = 0.028). Median OS was 80.6 months if tumor volume was ≤ 10 cc (1 and 3 years OS rate 93.6% and 77.5%, respectively), and 31.1 months if TTV was higher than 10 cc (1 and 3 years OS rate 86.7% and 42.3%, respectively). Rates of LC at 1 and 3 years were 89.3% and 76.5%. In terms of toxicity, no grade 3 or higher toxicity was reported both in the acute and late settings. CONCLUSION: We demonstrated the impact of tumor volume on survival and disease control of patients affected by multiple oligometastases treated with single course SABR.
Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Carga Tumoral , Neoplasias Pulmonares/patología , Radiocirugia/métodos , Supervivencia sin Progresión , Estudios RetrospectivosRESUMEN
Total marrow (lymph node) irradiation (TMI/TMLI) delivery requires more time than standard radiotherapy treatments. The patient's extremities, through the joints, can experience large movements. The reproducibility of TMI/TMLI patients' extremities was evaluated to find the best positioning and reduce unwanted movements. Eighty TMI/TMLI patients were selected (2013-2022). During treatment, a cone-beam computed tomography (CBCT) was performed for each isocenter to reposition the patient. CBCT-CT pairs were evaluated considering: (i) online vector shift (OVS) that matched the two series; (ii) residual vector shift (RVS) to reposition the patient's extremities; (iii) qualitative agreement (range 1-5). Patients were subdivided into (i) arms either leaning on the frame or above the body; (ii) with or without a personal cushion for foot positioning. The Mann-Whitney test was considered (p < 0.05 significant). Six-hundred-twenty-nine CBCTs were analyzed. The median OVS was 4.0 mm, with only 1.6% of cases ranked < 3, and 24% of RVS > 10 mm. Arms leaning on the frame had significantly smaller RVS than above the body (median: 8.0 mm/6.0 mm, p < 0.05). Using a personal cushion for the feet significantly improved the RVS than without cushions (median: 8.5 mm/1.8 mm, p < 0.01). The role and experience of the radiotherapy team are fundamental to optimizing the TMI/TMLI patient setup.
Asunto(s)
Médula Ósea , Radioterapia de Intensidad Modulada , Humanos , Médula Ósea/efectos de la radiación , Reproducibilidad de los Resultados , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , ExtremidadesRESUMEN
BACKGROUND: This study evaluated the outcome, toxicity and predictive factors in patients unfit for concurrent chemo-radiotherapy (CT-RT) treated with hypofractionated sequential CT-RT or exclusive radiotherapy (RT) for locally advanced non-small cell lung cancer (LA-NSCLC). METHODS: We included patients affected by LA-NSCLC (stage IIA-IVA) treated with a total dose of 50-60 Gy in 20 fractions. The primary outcomes were local control (LC), distant metastasis-free survival (DMFS), progression-free survival (PFS) and overall survival (OS). Univariate analysis was used to correlate outcomes with prognostic factors. RESULTS: Between 2011 and 2019, 210 patients were treated, 113 (53.8%) with sequential CT-RT and 97 (46.2%) with exclusive RT. After a median follow-up of 15.3 months, 74 patients (35.2%) had a local progression and 133 (63.3%) had a distant progression. The one-, two- and five-year LC were 73.6%, 55.3% and 47.9%, respectively. At the time of analysis, 167 patients (79.5%) died. The one-, two- and five-year OS were 64.7%, 36% and 20%, respectively. PTV volume correlated with PFS (p = 0.001) and LC (p = 0.005). Acute and late toxicity occurred in 82% and 26% of patients. CONCLUSIONS: Albeit with the known limitations of a retrospective and heterogeneous study, our work shows that hypofractionated sequential CT-RT or exclusive RT offer a good local control and toxicity profile and a promising survival rate in LA-NSCLC patients unfit for the concurrent CT-RT scheme.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Retrospectivos , Tasa de SupervivenciaRESUMEN
PURPOSE: Interventional radiotherapy (IRT, brachytherapy and intra-operative radiotherapy) is a complex treatment approach that requires a multi-professional approach. The aim of this work was to assess the role of radiation therapy technologist (RTT) in IRT team, with a special focus on brachytherapy as well as to define more appropriate ways to improve skills and training to promote cooperation of multi-professional team. MATERIAL AND METHODS: A nationwide survey consisting of 16 questions was proposed between April and May 2020, with collaboration between the Italian Association of Radiation Therapy and Medical Physics Technologists (AITRO) and the Interventional Radiotherapy Study Group of Italian Association of Radiotherapy and Clinical Oncology (AIRO). The survey was sent through the AITRO contact list to RTTs' contacts from all Italian radiotherapy (RT) departments. RESULTS: A total of 37 answered questionnaires returned (36% of all contacts reached), each from different center. 23 centers (62%) presented with dedicated team for IRT treatments, while 15 centers (41%) had dedicated RTT staff. The majority of RTT (86%) did not consider undergraduate training adequate to acquire the skills required to work in IRT departments or units. CONCLUSIONS: This survey underlines the need of additional education and training for RTTs that should focus on treatment management optimization in development of an IRT multi-professional team. Specific updates could be the key to develop further collaboration and to improve cancer patient care.